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Abstract

The integration of machine and deep learning models into Earth science ap-
plications has become increasingly crucial for analyzing time-series satellite data,
particularly in monitoring environmental changes and land cover classification. This
report presents the development and implementation of the sits lstm fcn func-
tion within the SITS package, an open-source R framework for satellite image time-
series analysis. Based on the LSTM Fully Convolutional Networks (LSTM-FCN)
model, this function combines temporal convolutions and LSTM blocks to effec-
tively capture both local temporal patterns and long-term dependencies in the
data. The report details the theoretical background, model architecture, and train-
ing methodology, along with the challenges and solutions encountered during imple-
mentation. Results from experiments on multi-band satellite data demonstrate the
model’s strong classification performance, achieving 85% accuracy on the valida-
tion dataset. By providing a user-friendly interface, this contribution expands the
SITS package’s capabilities, enabling researchers to utilize advanced deep learning
models with minimal programming effort.

Introduction

Monitoring Earth’s changing environment is crucial for understanding and mitigating the
impacts of climate change. Satellite imagery plays a key role in this effort, providing rich
temporal data for analyzing land use, vegetation dynamics, and other phenomena. How-
ever, transforming this data into actionable insights often requires expertise in advanced
techniques like machine and deep learning—skills many Earth scientists lack.

To address this challenge, tools like SITS (an open-source R package) have been
developed to simplify the analysis of time-series satellite data. The SITS API allows
researchers to use a wide range of machine learning and deep learning algorithms with
minimal programming or mathematical expertise.

Given the fast-paced evolution of machine learning, new methods are continually being
developed and integrated. In this project, I contributed to the SITS API by implementing
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a deep learning method: a fully convolutional network (FCN) with temporal convolutions
and long short-term memory (LSTM) blocks. SITS users are able to train this model
and classify time-series satellite imagery data with only a few lines of R code, making
sophisticated analyses more accessible to a wider scientific community.

Theoretical Background

The new API function implemented in SITS was proposed in the LSTM Fully Convolu-
tional Networks for Time Series Classification, by Fazle Karim et al., published by IEEE
Access, 6(1662-1669), in 2018. It is a branched neural network with two paths running
concurrently: dimension shuffling and LSTM, and an FCN pathway.

Input Time Series

Dimension Shuffle Conv1D, BN, ReLU

LSTM Pooling

Concat

Softmax

Figure 1: Network Architecture Diagram

LSTM Pathway

For clarity, I assume each time series has a single band—Normalized Difference Vegetation
Index (NDVI)—though this discussion can be easily expanded to include multivariable
time series as well. When each predictor enters this pathway, the dimension shuffling
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layer makes it so that the LSTM sees each time step in the series (e.g., each date’s NDVI
value) as a separate feature or variable within a single time step. Instead of observing a
sequence of time steps, it sees a single frame containing all those time steps as different
variables.

With this reshaped input, the LSTM layer then attempts to capture dependencies
among the transformed time steps within that single series. It focuses on relationships
within each individual time series after it’s been reshaped.

FCN Pathway

The FCN pathway applies 1D temporal convolutions to a time series by sliding a filter
across the time steps to capture local temporal patterns within and across each variable.
This process is analogous to how convolutions are applied to images. Just as an image
has bands (e.g., red, green, and blue), a time series has variables—such as NDVI, En-
hanced Vegetation Index (EVI), and Near Infrared (NIR)—which can each be filtered to
extract relevant patterns. Following the convolutional layers, global pooling reduces the
dimensionality, condensing information across bands.

Both pathways run in parallel and are merged before applying softmax for classifica-
tion.

Implementation Details

Preprocessing

• Input samples are normalized using .pred normalize() based on the statistics of
the training data.

• If no validation dataset is provided, the training dataset is split into training and
validation sets.

Model Architecture

LSTM Branch

• Processes the time series data using an LSTM layer.

• Includes a dropout layer for regularization.

FCN Branch

• Applies three 1D convolutional layers with batch normalization and ReLU activa-
tion.

• Features dropout for each convolutional layer.

• Includes global average pooling to reduce spatial dimensions.

Dense Layer

• Concatenates the outputs of the LSTM and FCN branches.

• Applies a fully connected layer for classification.
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Training

The model is trained using the luz package with:

• Cross-entropy loss.

• Accuracy as a performance metric.

• Callbacks for early stopping and learning rate scheduling.

Function Signature

sits_lstm_fcn(

samples = NULL,

samples_validation = NULL,

cnn_layers = c(128, 256, 128),

cnn_kernels = c(8, 5, 3),

cnn_dropout_rates = c(0.0, 0.0, 0.0),

lstm_width = 8,

lstm_dropout = 0.8,

epochs = 50,

batch_size = 64,

validation_split = 0.2,

optimizer = torch::optim_adamw,

opt_hparams = list(lr = 5.0e-04, eps = 1.0e-08, weight_decay = 1.0e-06),

lr_decay_epochs = 1,

lr_decay_rate = 0.95,

patience = 20,

min_delta = 0.01,

verbose = FALSE

)

Results

Dataset Description

The classification experiments were conducted on the Sinop and Rondonia raster cubes
available in the sits package. The samples used in the training (available in the sitsdata
package) contain time-series satellite data, with key features including NDVI, Enhanced
Vegetation Index (EVI) values, for the Sinop cube, and NDVI, EVI, Near-Infrared (NIR),
and Mid-Infrared MIR values for the Rondonia cube. The data spans multiple seasons
and captures various land cover types, providing a robust test of the model’s ability to
distinguish between classes.

Experimental Setup

Following the extensive tuning the model’s authors performed on their paper, the sits lstm fcn

function was configured with the following parameters, which were found to be optimal:
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• Convolutional layers: [128, 256, 128].

• Kernel sizes: [8, 5, 3].

• LSTM width: 8.

• Epochs: 50.

• Batch size: 64.

The training and validation datasets were split with an 80-20 ratio, and the model
was trained using the AdamW optimizer with a learning rate of 5e-4.

Performance Metrics

Using the plot(sits lstm fcn model) function, we can see the model’s loss and accuracy
for both the training and validating sets.

(a) Training with the Mato Grosso samples. (b) Training with the Rondonia samples.

Figure 2: Training the model.

As we can see, the model quickly converges, resulting in early stops for both data.
However, it is worth pointing out that the datasets included in the sitsdata package are
very well-behaved are easy to classify.

Visualization

Below are two examples of the classification maps generated from the model’s predictions:

(a) Sinop NDVI
(b) Sinop Forest Probabili-
ties (c) Sinop Classified

Figure 3: Sinop Raster Cube Classification.
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(a) Rondonia NDVI
(b) Rondonia Forest Proba-
bilities (c) Rondonia Classified

Figure 4: Rondonia Raster Cube Classification.

Student’s Contribution

• Learning the Model: The project began with an in-depth study of the paper ”LSTM
Fully Convolutional Networks for Time Series Classification” to understand the
model’s architecture and principles. This was essential for translating the theory
into practice.

• Familiarity with R and Libraries: As part of this project, I became proficient in
R, specifically its implementation of PyTorch (‘torch‘), and the use of supporting
libraries like ‘luz‘ and ‘tidyverse‘. These tools were fundamental in building and
managing the model.

• Reimplementation of SITS Functions: To facilitate the implementation, I created
custom versions of many internal SITS functions, particularly those responsible for
data formatting and parameter testing. This effort helped isolate and debug the
components necessary for integrating the model.

• Visualization Functions: The visualization functions from SITS were not reimple-
mented, as I am still learning their use and functionality. This area remains a focus
for future development.

• Transition to the SITS Package: Once the model worked in a microenvironment,
I integrated it into the SITS package, leveraging internal functions. This phase
involved resolving compatibility issues related to operating systems and CUDA
support, ensuring seamless execution across platforms.
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A Function Source Code

The source code for the sits lstm fcn function is provided below:

#’ @title Train an lstm and fcn neural network

#’ @name sits_lstm_fcn

#’

#’ @author Alexandre Assuncao, \email{alexcarssuncao@@gmail.com}

#’

#’ @description Uses a branched neural network consisting of

#’ a lstm branch and a three-layer fully convolutional branch

#’ followed by concatenation to classify time series data.

#’

#’ This function is based on the paper by Fazle Karim, Somshubra Majumdar,

#’ and Houshang Darabi. If you use this method, please cite the original

#’ LSTM with FCN paper.

#’

#’ The torch version is based on the code made available by the titu1994.

#’ The original python code is available at the website

#’ https://github.com/titu1994/LSTM-FCN. This code is licensed as GPL-3.

#’

#’ @references F. Karim, S. Majumdar, H. Darabi and S. Chen,

#’ "LSTM Fully Convolutional Networks for Time Series Classification,"

#’ in IEEE Access, vol. 6, pp. 1662-1669, 2018,

#’ doi: 10.1109/ACCESS.2017.2779939.

#’

#’ @param samples Time series with the training samples.

#’ @param samples_validation Time series with the validation samples. if the

#’ \code{samples_validation} parameter is provided,

#’ the \code{validation_split} parameter is ignored.

#’ @param lstm_width Number of neuros in the lstm’s hidden layer.

#’ @param lstm_dropout Dropout rate of the lstm layer.

#’ @param cnn_layers Number of 1D convolutional filters per layer

#’ @param cnn_kernels Size of the 1D convolutional kernels.

#’ @param cnn_dropout_rates Dropout rates for 1D convolutional filters.

#’ @param epochs Number of iterations to train the model.

#’ @param batch_size Number of samples per gradient update.

#’ @param validation_split Fraction of training data to be used for

#’ validation.

#’ @param optimizer Optimizer function to be used.

#’ @param opt_hparams Hyperparameters for optimizer:

#’ lr : Learning rate of the optimizer

#’ eps: Term added to the denominator

#’ to improve numerical stability.

#’ weight_decay: L2 regularization

#’ @param lr_decay_epochs Number of epochs to reduce learning rate.

#’ @param lr_decay_rate Decay factor for reducing learning rate.

#’ @param patience Number of epochs without improvements until
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#’ training stops.

#’ @param min_delta Minimum improvement in loss function

#’ to reset the patience counter.

#’ @param verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

#’

#’ @return A fitted model to be used for classification.

#’

#’ @export

sits_lstm_fcn <- function(samples = NULL,

samples_validation = NULL,

cnn_layers = c(128, 256, 128),

cnn_kernels = c(8, 5, 3),

cnn_dropout_rates = c(0.0, 0.0, 0.0),

lstm_width = 8,

lstm_dropout = 0.8,

epochs = 50,

batch_size = 64,

validation_split = 0.2,

optimizer = torch::optim_adamw,

opt_hparams = list(

lr = 5.0e-04,

eps = 1.0e-08,

weight_decay = 1.0e-06

),

lr_decay_epochs = 1,

lr_decay_rate = 0.95,

patience = 20,

min_delta = 0.01,

verbose = FALSE) {

# set caller for error msg

.check_set_caller("sits_lstm_fcn")

# Function that trains a torch model based on samples

train_fun <- function(samples) {

# does not support working with DEM or other base data

if (inherits(samples, "sits_base"))

stop(.conf("messages", "sits_train_base_data"), call. = FALSE)

# Avoid add a global variable for ’self’

self <- NULL

# Verifies if ’torch’ and ’luz’ packages is installed

.check_require_packages(c("torch", "luz"))

# Pre-conditions:

.check_samples_train(samples)

.check_int_parameter(cnn_layers, len_max = 2^31 - 1)

.check_int_parameter(cnn_kernels,

len_min = length(cnn_layers),

len_max = length(cnn_layers)

)
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.check_num_parameter(cnn_dropout_rates, min = 0, max = 1,

len_min = length(cnn_layers), len_max = length(cnn_layers)

)

.check_int_parameter(lstm_width, len_max = 2^31 - 1)

.check_num_parameter(lstm_dropout, min = 0, max = 1)

.check_int_parameter(epochs)

.check_int_parameter(batch_size)

# Check validation_split parameter if samples_validation is not passed

if (is.null(samples_validation)) {

.check_num_parameter(validation_split, exclusive_min = 0, max = 0.5)

}

# Check opt_hparams

# Get parameters list and remove the ’param’ parameter

optim_params_function <- formals(optimizer)[-1]

if (!is.null(opt_hparams)) {

.check_lst_parameter(opt_hparams,

msg = .conf("messages", ".check_opt_hparams")

)

.check_chr_within(

x = names(opt_hparams),

within = names(optim_params_function),

msg = .conf("messages", ".check_opt_hparams")

)

optim_params_function <- utils::modifyList(

x = optim_params_function, val = opt_hparams

)

}

# Other pre-conditions:

.check_int_parameter(lr_decay_epochs)

.check_num_parameter(lr_decay_rate, exclusive_min = 0, max = 1)

.check_int_parameter(patience)

.check_num_parameter(min_delta, min = 0)

.check_lgl_parameter(verbose)

# Samples labels

labels <- .samples_labels(samples)

# Samples bands

bands <- .samples_bands(samples)

# Samples timeline

timeline <- .samples_timeline(samples)

# Create numeric labels vector

code_labels <- seq_along(labels)

names(code_labels) <- labels

# Number of labels, bands, and number of samples (used below)

n_labels <- length(labels)

n_bands <- length(bands)

n_times <- .samples_ntimes(samples)

# Data normalization

ml_stats <- .samples_stats(samples)
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train_samples <- .predictors(samples)

train_samples <- .pred_normalize(pred = train_samples, stats = ml_stats)

# Post condition: is predictor data valid?

.check_predictors(pred = train_samples, samples = samples)

# Are there validation samples?

if (!is.null(samples_validation)) {

.check_samples_validation(

samples_validation = samples_validation, labels = labels,

timeline = timeline, bands = bands

)

# Test samples are extracted from validation data

test_samples <- .predictors(samples_validation)

test_samples <- .pred_normalize(

pred = test_samples, stats = ml_stats

)

} else {

# Split the data into training and validation data sets

# Create partitions different splits of the input data

test_samples <- .pred_sample(

pred = train_samples, frac = validation_split

)

# Remove the lines used for validation

sel <- !train_samples[["sample_id"]] %in%

test_samples[["sample_id"]]

train_samples <- train_samples[sel, ]

}

n_samples_train <- nrow(train_samples)

n_samples_test <- nrow(test_samples)

# Shuffle the data

train_samples <- train_samples[sample(

nrow(train_samples), nrow(train_samples)

), ]

test_samples <- test_samples[sample(

nrow(test_samples), nrow(test_samples)

), ]

# Organize data for model training

train_x <- array(

data = as.matrix(.pred_features(train_samples)),

dim = c(n_samples_train, n_times, n_bands)

)

train_y <- unname(code_labels[.pred_references(train_samples)])

# Create the test data

test_x <- array(

data = as.matrix(.pred_features(test_samples)),

dim = c(n_samples_test, n_times, n_bands)

)

test_y <- unname(code_labels[.pred_references(test_samples)])

# Set torch seed
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torch::torch_manual_seed(sample.int(10^5, 1))

# The LSTM/FCN for time series:

lstm_fcn_model <- torch::nn_module(

classname = "model_lstm_fcn",

initialize = function(n_bands,

n_times,

n_labels,

kernel_sizes,

hidden_dims,

lstm_width,

cnn_dropout_rates,

lstm_dropout) {

# Upper branch: LSTM with dimension shift

self$lstm <- torch::nn_lstm(

input_size = n_times,

hidden_size = lstm_width,

dropout = 0,

num_layers = 1,

batch_first = TRUE

)

# Lstm’s dropout

self$dropout <- torch::nn_dropout(p = lstm_dropout)

# Lower branch: Fully Convolutional Layers and avg pooling

self$conv_bn_relu1 <- .torch_conv1D_batch_norm_relu_dropout(

input_dim = n_bands,

output_dim = hidden_dims[[1]],

kernel_size = kernel_sizes[[1]],

padding = as.integer(kernel_sizes[[1]] %/% 2),

dropout_rate = cnn_dropout_rates[[1]]

)

self$conv_bn_relu2 <- .torch_conv1D_batch_norm_relu_dropout(

input_dim = hidden_dims[[1]],

output_dim = hidden_dims[[2]],

kernel_size = kernel_sizes[[2]],

padding = as.integer(kernel_sizes[[2]] %/% 2),

dropout_rate = cnn_dropout_rates[[2]]

)

self$conv_bn_relu3 <- .torch_conv1D_batch_norm_relu_dropout(

input_dim = hidden_dims[[2]],

output_dim = n_bands,

kernel_size = kernel_sizes[[3]],

padding = as.integer(kernel_sizes[[3]] %/% 2),

dropout_rate = cnn_dropout_rates[[3]]

)

# Global average pooling

self$pooling <- torch::nn_adaptive_avg_pool1d(output_size = lstm_width)

# Flattening 3D tensor to run the dense layer

self$flatten <- torch::nn_flatten()
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# Final module: dense layer outputting the number of labels

self$dense <- torch::nn_linear(

in_features = n_bands * lstm_width * 2,

out_features = n_labels

)

},

forward = function(x) {

# dimension shift and LSTM forward pass

x_lstm <- x$permute(c(1, 3, 2)) |>

self$lstm()

# FCN forward pass

x_fcn <- x$permute(c(1, 3, 2)) |>

self$conv_bn_relu1() |>

self$conv_bn_relu2() |>

self$conv_bn_relu3() |>

self$pooling()

# Concatenate upper and lower branches

x_combined <- torch::torch_cat(list(x_lstm[[1]], x_fcn), dim = 2)

x_flat <- self$flatten(x_combined)

x_out <- x_flat |>

self$dense()

}

)

# train with CPU or GPU?

cpu_train <- .torch_cpu_train()

# Train the model using luz

torch_model <-

luz::setup(

module = lstm_fcn_model,

loss = torch::nn_cross_entropy_loss(),

metrics = list(luz::luz_metric_accuracy()),

optimizer = optimizer

) |>

luz::set_opt_hparams(

!!!optim_params_function

) |>

luz::set_hparams(

n_bands = n_bands,

n_times = n_times,

n_labels = length(labels),

kernel_sizes = cnn_kernels,

hidden_dims = cnn_layers,

lstm_width = lstm_width,

cnn_dropout_rates = cnn_dropout_rates,

lstm_dropout = lstm_dropout

) |>

luz::fit(

data = list(train_x, train_y),
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epochs = epochs,

valid_data = list(test_x, test_y),

callbacks = list(

luz::luz_callback_early_stopping(

monitor = "valid_loss",

patience = patience,

min_delta = min_delta,

mode = "min"

),

luz::luz_callback_lr_scheduler(

torch::lr_step,

step_size = lr_decay_epochs,

gamma = lr_decay_rate

)

),

accelerator = luz::accelerator(cpu = TRUE),

dataloader_options = list(batch_size = batch_size),

verbose = verbose

)

# Serialize model

serialized_model <- .torch_serialize_model(torch_model[["model"]])

# Function that predicts labels of input values

predict_fun <- function(values) {

# Verifies if torch package is installed

.check_require_packages("torch")

# Set torch threads to 1

# Note: function does not work on MacOS

suppressWarnings(torch::torch_set_num_threads(1))

# Unserialize model

torch_model[["model"]] <- .torch_unserialize_model(serialized_model)

# Used to check values (below)

input_pixels <- nrow(values)

# Transform input into a 3D tensor

# Reshape the 2D matrix into a 3D array

n_samples <- nrow(values)

n_times <- .samples_ntimes(samples)

n_bands <- length(bands)

# Performs data normalization

values <- .pred_normalize(pred = values, stats = ml_stats)

# Represent matrix values as array

values <- array(

data = as.matrix(values), dim = c(n_samples, n_times, n_bands)

)

# Get GPU memory

gpu_memory <- sits_env[["gpu_memory"]]

# if CUDA is available and gpu memory is defined, transform values

# to torch dataloader
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if (.torch_has_cuda() && .has(gpu_memory)) {

# set the batch size according to the GPU memory

b_size <- 2^gpu_memory

# transfor the input array to a dataset

values <- .as_dataset(values)

# To the data set to a torch transform in a dataloader to use the batch size

values <- torch::dataloader(values, batch_size = b_size)

# Do GPU classification with dataloader

values <- .try(

stats::predict(object = torch_model, values),

.msg_error = .conf("messages", ".check_gpu_memory_size")

)

} else {

# Do classification without dataloader

values <- stats::predict(object = torch_model, values)

}

# Convert from tensor to array

values <- torch::as_array(values)

# Update the columns names to labels

colnames(values) <- labels

return(values)

}

# Set model class

predict_fun <- .set_class(

predict_fun, "torch_model", "sits_model", class(predict_fun)

)

return(predict_fun)

}

# If samples is informed, train a model and return a predict function

# Otherwise give back a train function to train model further

result <- .factory_function(samples, train_fun)

return(result)

}

B Link to SITS GitHub Repository

The full SITS package, including the sits lstm fcn function, is available at the following
GitHub repository: https://github.com/e-sensing/sits (In the dev branch).

Declaration of AI Assistance

Generative AI tools were used in the preparation of this document to improve language
clarity, structure, and style. The content and technical aspects remain my original work.
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