
Compiling Algebraic Effects to C++
Marcos Vinicius Moreira Santos

Orientador: Fernando Magno Quintão Pereira 1

1Departamento de Ciência da Computação
Universidade Federal de Minas Gerais (UFMG)

Abstract. Algebraic Effects are an approach to computational effects based
on a premise that impure behavior arises from a set of operations and
they give to the programmer a powerful framework to construct advanced
control flow abstractions on a pure functional way. During this report, it
will be described a technique used to construct a simple compiler capable
of transforming a simple language that supports abstractions similar to
Algebraic Effects into C++ code.

Resumo. Os Efeitos algébricos são uma abordagem para efeitos computa-
cionais baseada na premissa de que o comportamento impuro surge de um
conjunto de operações e fornecem ao programador uma estrutura poderosa
para construir abstrações avançadas de fluxo de controle de maneira pura-
mente funcional. Durante este relatório, será descrita uma técnica utilizada
para construir um compilador simples capaz de transformar uma linguagem
simples que suporte abstrações semelhantes a Efeitos Algébricos em código
C++.

1. Introduction
Algebraic Effects and Effect Handlers provide a modular foundation for user-

defined effects by separating the definition and implementation of effects. When a
handler is executed, it runs in the scope that catches the effect. They can be thought
of as a generalization of exception handlers in languages such as Java and C++, with
the added ability to resume a computation that was interrupted by an exception.
Like exception handlers, they are executed in the scope that catches the exception
and contain the definition for the handler, usually inside a catch block.

In recent years, Algebraic Effects have gained attention in research languages
such as Koka and Effekt, and there is also an effort to bring an Effect System to
Multi Core OCaml. Matija Pretna’s article "A Gentle Introduction to Algebraic
Effects and Handlers" [Pretnar 2015] provides a clear introduction to "Algebraic
Effects" with many examples that can be understood by programmers with little or
no prior knowledge of them. The examples are built on a simple framework of an
extended lambda calculus to construct powerful control flow abstractions such as
Mutable State, Exceptions, Input & Output, Non Determinism, Backtracking, and
more using the semantics of Algebraic Effects.

While efficient techniques for compiling Algebraic Effects do exist, such as the
method used in Multi Core OCaml which utilizes segmented stacks, these techniques
often require platform support, making them difficult to port to more restrictive

targets such as Web Assembly. In their article [Xie and Leijen 2021], Xie and Leijen
describe the technique used by the Koka compiler to compile the Koka language
into efficient C code without the need for a runtime system like a garbage collector.
They achieve this by using a special reference counting mechanism as described in
[Alex Reinking and Leijen]. In this report, we will discuss a technique inspired by
[Xie and Leijen 2021], which can be used to compile a simple language supporting
the semantics of Algebraic Effects, and with further development, could potentially
fully support them in the future.

This report is divided into three sections. First, we will briefly discuss the
language we will be using. Second, we will present all the steps needed to transform
the language into something that can be easily translated into C++ code. Finally,
we will discuss the next steps and lessons learned during the development of this
project.

2. The Language
A language was designed and implemented in order to facilitate the study

and development of the technique within a simplified environment. This language is
statically typed and supports as base types 32-bit integers, handler collections, the
any type which is equivalent to a void pointer in C++ and the unit type. Additionally,
the language supports structs and pointers. Its syntax is straightforward enough
to be understood by individuals with a moderate level of experience in imperative
programming. The imperative style was chosen due to the author’s preference and
because Algebraic Effects have not been extensively studied within this paradigm.

The following are the primary rules for the language’s syntax. Some rules
that are considered trivial, such as those for < symbol > and < number >, will be
omitted. It should be assumed that these omitted rules follow the same definitions
as those found in languages like C and C++.

⟨type⟩ ::= ⟨type⟩ ’->’ ⟨type⟩
| ⟨type⟩ * ⟨type⟩
| unit
| handler_t
| i32
| any

⟨decl⟩ ::= ⟨symbol⟩ ’:’ ⟨type⟩

⟨constant⟩ ::= ⟨decl⟩ ’:’ ⟨expr⟩

⟨variable⟩ ::= ⟨decl⟩ ’=’ ⟨expr⟩

⟨call-args⟩ ::= ⟨symbol⟩ ’,’ ⟨call-args⟩
| ⟨symbol⟩

⟨func-call⟩ ::= ⟨symbol⟩ ’(’ ⟨call-args⟩ ’)’

⟨effect-call⟩ ::= ⟨symbol⟩ ’!’ ’(’ ⟨call-args⟩ ’)’

⟨func-args⟩ ::= ⟨decl⟩ ’,’ ⟨func-args⟩
| ⟨decl⟩

⟨func-literal⟩ ::= ’(’ ⟨func-args⟩ ’)’ ’->’ ⟨type⟩ ’{’ ⟨statements⟩ ’}’
⟨effect-declaration⟩ ::= ’(’ ⟨func-args⟩ ’)’ ’->’ ⟨type⟩

⟨assignment⟩ ::= ⟨symbol⟩ ’=’ ⟨expr⟩

⟨if-stmt⟩ ::= ’if’ ⟨symbol⟩ ’{’ ⟨statements⟩ ’}’ ⟨else-stmt⟩

⟨else-stmt⟩ ::= ’else’ ’{’ ⟨statements⟩ ’}’
| ’else’ ⟨if-stmt⟩
| ⟨empty⟩

⟨ret-stmt⟩ ::= ’return’ ⟨expr⟩

⟨prompt⟩ ::= ⟨func-call⟩ ’with’ ⟨symbol⟩

⟨func-literals-decls⟩ ::= ⟨decl⟩ ’:’ ⟨func-literal⟩ ’;’ ⟨func-literals-decls⟩
| ⟨empty⟩

⟨handler-effect-decls⟩ ::= ’handler’ ’{’ ⟨func-literals-decls⟩ ’}’
⟨expr⟩ ::= ⟨expr⟩ + ⟨expr⟩

| ⟨expr⟩ - ⟨expr⟩
| ⟨expr⟩ * ⟨expr⟩
| ⟨expr⟩ / ⟨expr⟩
| ⟨expr⟩ / ⟨expr⟩
| ’(’⟨expr⟩’)’
| ⟨func-literal⟩
| ⟨effect-declaration⟩
| ⟨symbol⟩
| ⟨number⟩
| ⟨handler-effect-decls⟩

⟨statement⟩ ::= ⟨constant⟩
| ⟨variable⟩
| ⟨assignment⟩
| ⟨ret-stmt⟩
| ⟨if-stmt⟩
| ⟨expr⟩
| ⟨empty⟩

⟨statements⟩ ::= ⟨statement⟩ ’;’ ⟨statements⟩
| ⟨constant⟩
| ⟨variable⟩
| ⟨assignment⟩
| ⟨ret-stmt⟩
| ⟨if-stmt⟩
| ⟨expr⟩
| ⟨empty⟩

Here is an simple example:

ask : i32 -> i32 : (a: i32) -> i32;
f : unit -> i32 : () -> i32 {

x :: ask!(4);
return x;

}
g : unit -> i32 : () -> i32 {

w : i32 = 0;
read : handler_t : handler {

ask : i32 -> i32 : (a : i32) -> i32 {
one : i32 = 1;
x : i32 = resume(one);
z : i32 = x + w + a;
return z;

}
}
x : i32 = f() with read;
return x;

}

The given example declares an effect called ask that takes in an integer and
may resume the computation with another integer that is dependent on the handler.
The example also defines two functions, f and g. f simply performs the ask effect
and returns the value that the computation is resumed with by the effect handler.
As a result, every time f is called, a handler that provides a definition for ask must
be found on the stack. The function g defines a variable w and a handler collection
called read with an effect handler for the ask effect. It then calls f with read as
the handler collection for f and returns the result of f . The handler read defines
an implementation for ask that calls the operation resume once. Currently, this is
the operation used to resume computations that were stopped by effect invocations.
However, this is a poor design decision and in the future it will be better to pass an
explicit reference to the resumable computation as a callable argument, such as a
function pointer passed to the effect handler. The declaration for ask in read should
include this argument. We will discuss this decision further later in the report.

3. Methodology

To support Algebraic Effects, we need a mechanism similar to Exception
Handling, where we go back on the stack to the point where a catch operation
is performed, but also supporting the resumption of the computation that got
interrupted. To be able to support this, we need to capture the continuation of the
computation being performed during the invocation of the effect. A continuation
is just an abstract representation of the control state of a given program, for our
purposes, it is a point in the program with which we can stop, and resume later
depending on our program runtime. To capture a continuation, we need to capture
two pieces of information, the data being used by a given computation, and the
sequence of instructions that will use that data from that point forward, thankfully,
the piece of computation that uses the data, is know at compile time, since it is just
the sequence of instructions from that point forward, the contents on the stack in
the other hand is not know at compile time.

In order to support Algebraic Effects, we require a mechanism similar to
exception handling, where we return to the point in the stack where a catch operation
is performed, but with support for the resumption of the interrupted computation. To
achieve this, we must capture the continuation of the computation being performed
during the effect’s invocation. The continuation is an abstract representation of a
program’s control state, which in our case represents a point in the program where
we can pause and resume later. Capturing a continuation requires us to capture two
pieces of information, the data being used by a given computation and the sequence
of instructions that will use that data from that point forward. Fortunately, the
piece of computation that uses the data is known at compile time, as it is simply the
sequence of instructions from that point forward. However, the contents of the stack
at any given point are not known at compile time.

In [Xie and Leijen 2021], the authors describe how continuations are captured
in Koka [Kok]. We will use a similar technique in which we capture continuations
by splitting the program at points where a continuation may need to be captured
and saving the current stack frame at those points. To resume the computation, each
split point will become a function that receives the data it requires as arguments.
These functions will then be composed to resume the computation, for example,
given the data that continuation functions f , g, and w require, we can resume the
computation with the calls f(g(w(x))), where x is the input to the continuation or
the argument to resume in our case.

In our example, functions f , g, and w will be captured during the program’s
runtime. Each time we call an effect, we must pop the call stack until we find the
handler for the effect being performed. This is where we capture functions f , g, and
w, as well as the data they require, which is known statically. We will refer to the
process of popping the stack to find the catch point of effects as "yielding," and we
will refer to the saving of continuations during yielding as "bubbling." This process
is explained in more detail in [Xie and Leijen 2021].

The pipeline that we’re going to discuss, compile the program through a
pipeline of transformations:

• Handler Pass: The first pass, takes all handler objects, like the read handler
that we use as an example earlier for example, and transform them into
function literals, that can be compiled later into normal C functions, this
process also replaces any with statement by function calls, so at the end of
this process, no handler declaration or with statements should be present on
the resulting IR.

• Stack Frame Allocation Pass: This pass allocates heap memory for stack
frames, we’re currently using a naive strategy in which we just linearly
increases the size of the stack frame to make room for all local variables, our
approach does not support dynamically increasing the size of the stack frame
at runtime, all variables needs to have they size known at compile time as well.
After that we insert the stack frame allocation and stack frame deallocations
at the beginning and at the end of the function and then remove any variable
declaration, replacing the use of the local variables by a simple offset and a
type cast on the allocated stack frame. Its worth remembering that we’re

currently using the C++ stack to store the function return value, so before
freeing the stack frame, we allocate an extra variable, outside of the stack
frame, to store the return value currently saved on the stack frame buffer,
making sure that the return value outlives the stack frame that will be freed
before the function returns.

• Continuation Pass: During this pass we split the program creating functions
like the f , g and w that we talked about earlier, they are created as local
lambda functions that are lifted later in the pipeline. During this pass, the
created lambdas may call the methods responsible for freeing the stack frame
that got inserted in the previous pass, we also lift those calls to the top most
enclosing function, so no continuation pops the stack frame that it uses after
being called.

• Bubbling Pass: During this pass, we insert all the checks and logic needed to
handle the yielding and the bubbling processes.

All those passes are going to be discussed in much detail later.

3.1. The Context object
During the program execution, some information will have to be recorded.

To store information at runtime, we’re going to use a context object, that is a data
structure that will be passed down on every function call as an extra argument, and
is going to store information like what Effects Handlers are currently available to
the program, so if the program is yielding, all the continuations being captured
are stored at this context object as a linked list, this list will also store then in the
order in which the functions will need to be composed, remember that we’re going
to restore a continuation by function composition, like in f(g(w(x))), so when we
are capturing the continuations, we store the functions f , g and w inside a linked
list in the context object alongside they respective stack frame buffers. In resume,
any contextual information needed by the runtime should be present on the context
object.

3.2. The Compilation Pipeline
3.2.1. Handler Pass

The first pass of the compilation pipeline is responsible for transforming every
handler declaration and every with statement into simpler constructs, this is done
in the following steps:

1. The compiler generates a unique numerical hash value for every effect decla-
ration.

2. The compiler rewrites every effect declaration into a function literal, this
function is responsible for making the setup of the context object that is
needed for the bubbling process to start at runtime by setting some values on
the context object itself.

(a) First, all the arguments for this function are collapsed into a single
argument that will be a pointer to a structure that will contain all the
old arguments as members.

(b) The body of this function will set the values for the context members
responsible for holding which effect is the runtime trying to find a
handler for, and also if the runtime is yielding or not, this is done by
saving some boolean values as well as the hash of the effect declaration.

(c) Heap space is allocated for the structure argument and all arguments
being passed to the effect are saved on that buffer.

(a) All Handlers are rewritten into a lambda function, that we’ll be refer-
ring to as the prompt lambda function, it will have two arguments, an
input buffer called in and an output buffer called out. the body of the
resulting functions is generated by the following steps:

i. All functions that are effect handlers defined inside the handler
are converted into local lambdas with their arguments collapsed
to use a pointer to the struct created on step 2, remember
that the handler will have the same arguments as the effect
declaration, they also receive an extra argument, a pointer to
the return type of the function that defines the handler being
rewritten, the first argument will receive the name args, and
the second will be called promptret.

ii. Since effect handlers need to be executed at the scope of the
function that defines them, if a handler performs return, it
should take effect on the enclosing function, not just on the
prompt lambda itself, in our example, the statement returnz
inside the effect handler for ask makes g returns z. To support
that behavior, before every return statement inside the handler,
we add a method that signals in the context that the called
prompt lambda called return, the return statement itself is also
converted in a way that the returned value is stored on the
promptret argument, so returnz becomes ∗promptret = z.

iii. A big switch statement is inserted, this switch checks the hash
saved on the context, if the hash being handled is also a hash
of any local prompt lambda created earlier, then we use the
context to get the buffer with the arguments, this buffer needs
to be casted to a pointer to the struct created at step 2.a, after
that the corresponding lambda is called passing the arguments
buffer as the first argument and the prompt_ret argument is
passed as the second argument. After the prompt lambda
call, the context should be notified that the effect was handled
and then the program checks using the context if the prompt
lambda performed a return operation, if it did, then the prompt
immediately returns a value that signals that at least one effect
was handled inside this prompt function, remember that the
return value is already saved in the second argument passed to
the prompt function.

iv. If no return operation was performed inside the switch state-
ment, then the resulting prompt function should return a value
that signals if at least one effect was handled.

(b) After every with statement, we allocate an extra variable, that we’ll
refer to as promptret, it’ll have the same type as the return type of the
function. After allocating this variable, we call the prompt lambda
function, passing null as the first argument, and the address of the
promptret as the second argument, so it will be used as the output buffer
for the prompt closure. The first argument is here because the prompt
function needs to maintain a common interface with continuation
functions that we are going to see later in this report.

(c) After every prompt call, we check using the context to see if any effect
handler performed a return, in this case we signals to the context
that the return was handled, and return the value saved on promptret,
otherwise we continue to execute the function normally.

(d) We insert on every function literal a reference to the context object
as an extra argument, and we also pass down this context object into
every function call.

We will be using an extended version of our language defined earlier here but
with minimal changes, mut just means that the defined variable is mutable.

The resulting of this pass on our first example should look something like
this:

args_ask : struct = struct {
mut a : i32

}

ask : i32 × context* -> i32 = (mut a : i32, mut ctx : context*) -> i32 {
set_is_yielding_to(0, ctx)
t0 : any* = ctx_allocate_args(sizeof(args_ask), ctx)
t1 : args_ask* = (args_ask*)(t0)
t1.a = a
return 0

}

f : context* -> i32 = (mut ctx : context*) -> i32 {
x : i32 = ask(4, ctx)
return x

}

g : context* -> i32 = (mut ctx : context*) -> i32 {
mut w : i32 = 0
ask : args_ask* × i32* × context* -> i32 = (

mut args : args_ask*, mut prompt_ret : i32*, mut ctx : context*
) -> i32 {

mut one : i32 = 1
mut t3 : any* = (any*)(&one)
mut t2 : any* = resume(t3, ctx)
mut x : i32 = *((i32*)(t2))

mut t5 : any* = (any*)(&one)
mut t4 : any* = resume(t5, ctx)
mut y : i32 = *((i32*)(t4))
mut z : i32 = x + w + y + args.a
*(prompt_ret) = z
ctx_set_returning(true, ctx)
return 0

}

f(ctx)
prompt_read : any* × any* × context* -> unit = (

mut in : any*, mut out : any*, mut ctx : context*
) -> unit {

yielding_to_ask : i32 = ctx_is_yielding_to(0, ctx)

if yielding_to_ask {
mut args_for_ask : args_ask* = (args_ask*)(ctx_get_handler_args(ctx))
ask(args_for_ask, (i32*)(out), ctx)
ctx_effect_handled(0, ctx)
return 1

}

mut is_yielding__ : i32 = is_yielding(ctx)
return 0

}

mut prompt_ret : i32 = 0
prompt_read(0, (any*)(&prompt_ret), ctx)
ctx_is_returning_ : i32 = ctx_is_returning(ctx);

if ctx_is_returning_ {
ctx_set_returning(false, ctx)
return prompt_ret

}

return 0
}

3.2.2. Stack Frame Allocation Pass

During the Stack Frame Allocation Pass we compute the static size of the
buffer needed by each function literal and allocate memory for each variable, we
insert pushframe and popframe calls into each function literal, the pushframe and
popframe functions just allocate and free memory for stack frames, internally they
use the TLSF Allocator [tls], a real time general purpose allocator.

During the stack frame allocation pass, lambda functions receive an extra
argument, referred to as the stack frame pointer and denoted with the prefix sp.
Additionally, extra memory is allocated on the stack frame to link the previous stack
frame as the first 8 bytes of the buffer, and to save the values of the arguments
passed to the function, with the exception of the argument used to pass the context
object. If the function is not a lambda, the first 8 bytes are left uninitialized. This
allocation of memory and saving of arguments is necessary because they may need
to be accessed outside the scope of the function, such as during a resume operation.
In this case, it is necessary to save the arguments in a location that can be accessed
later. Any use of arguments within the body of the function is also replaced with a
reference to the value saved in the stack frame, with the exception of the context
object argument, which is not saved.

During the compilation process, we allocate a temporary variable called ret
on the C++ stack to store the return value for functions. In the future, we may
lower the representation of our code and pass the return address as an argument to
the function instead of relying on the C++ stack.

Here is an example for the promptread function in our example:

prompt_read : any* × any* × context* × any* -> unit = (
mut in : any*, mut out : any*, mut ctx : context*, mut sp1 : any*

) -> unit {
mut sp2 : any* = push_frame(36)
*((any**)(sp2)) = (any*)(sp1)
*((any***)(sp2 + 16)) = &out
*((any***)(sp2 + 8)) = &in
((i32)(sp2 + 24)) = ctx_is_yielding_to(0, ctx)

if *((i32*)(sp2 + 24)) {
*((args_ask**)(sp2 + 28)) =

(args_ask*)(ctx_get_handler_args(ctx))
ask(*((args_ask**)(sp2 + 28)), (i32*)(*(*((any***)(sp2 + 16)))), ctx, sp1)
ctx_effect_handled(0, ctx)
ret : i32 = 1;
pop_frame(sp2, 36)
return ret

}

((i32)(sp2 + 28)) = is_yielding(ctx)
ret : unit = 0;
pop_frame(sp2, 36)
return ret

}

3.2.3. Continuations Pass

In this pass, we divide each function into every possible yielding point, where
a yielding point is any point at which the program can yield control back to an
effect handler on the stack. In the future, we can perform more precise analysis to
improve code generation, but for now, we consider any point after a function call
to be a potential yielding point. This means that we split a program point at each
function call.

The split creates a lambda function, which must have a special signature
that is common to all other lambdas created in this pass, allowing them to be saved
in a data structure and called in a generic way without runtime checks for typing
information. We assume that function calls can occur in two situations: on the right
side of an assignment or as a standalone function call statement. If the language
supports function calls in other situations, they can be easily converted to meet our
requirements by introducing temporary variables.

The split is recursively done in the following way:

1. We can split the list of program points in three different places:
(a) At the right side of an assignment: In the case where a function call

occurs on the right side of an assignment, we introduce a temporary
variable to store the result of the function call. This is necessary
because the function call may perform an effect that interrupts the
computation before the assignment can be completed. In order to
handle this possibility, we split the program point after the function
call and before the assignment. This results in two lists of program
points, one with the program point t = f() as the tail, and another
with the program point a = t as the head. This split allows us to
handle the potential interruption of the computation due to an effect.

(b) At a function call without an assignment: We just split the function
at the point after the function call, such that the call becomes the tail
of the current program point list.

(c) At the meeting points of branches.
2. After we split the body of the function as described on step 1, we create the

function that will be the continuation function, let’s refer by A the program
point that became a tail after the split, and lets refer as B the head of the
resulting program point list after the split. B will became the entry point for
the continuation function, all continuations needs to have the same function
signature, this signature will need four arguments:

(a) An input argument, that will be a pointer to any(our equivalent to
a void pointer in C++), this argument will only be used in case the
splitting point is caused by an assignment.

(b) This function also needs an argument for the output of the continuation,
let’s call this argument contret, also with the type ∗any.

(c) It also needs a pointer to the stack frame of the enclosing function.
(d) A pointer to the context object, remember that all functions receive

the context object as an argument.

This function will receive four arguments, the return type of the lambda
continuation functions also needs to have a common type, we use the unit
type. Since we need to obey this generic signature, the continuation starting
at B should be transformed in the following way:

• In we are splitting at an assignment, we will have something like a = t
at the head of our body, the statement B from early, the variable t
in that case will be passed as the first argument with type ∗any, so
this assignment should become a = cast(T∗, t) where T is the type of
a. If we are splitting at a point that is not an assignment, the first
argument is ignored.

• All return statements, such as returnz are converted into ∗contret =
∗z; return0.

3. This function is inserted after A, with name cidx where idx is a unique number
not yet used by any identifier of any other lambda continuation function
within the current scope.

4. We may be creating a continuation function on two situation, on the body of
a function that is already a continuation, or at the original function:

(a) If we’re splitting at the original function, we allocate an extra variable
named promptret with type equal to the return type of the function, we
then insert the call statement of the continuation function created at
step 3, with the address of t as first argument, in case of an assignment,
casting it to any*, or nil if the continuation does not result from an
assignment, we also pass the address of promptret as second argument,
also casts to any*, and propagate the context object and stack frame
pointer as third and fourth argument respectively, then we insert
returnpromptret after the call, and this will become the body of our
function.

(b) If we’re splitting inside a continuation, we just call the continuation,
with the address of t as first argument, in case of an assignment,
casting it to any*, or nil if the continuation does not result from an
assignment, and then we propagate the contret pointer down to the
call, as well as the context object and the stack frame pointer, after
that we just insert the return0 statement.

5. popframe calls may end up happening at the end of a continuation lambda,
we lift those calls to the same scope that allocates the stack frame.
In the following example, we’ll use a slightly different pseudo code language

than the one we use in the previous examples, here we’ll be representation the
stack frame as a map instead of offsets in the stack frame buffer, so instead of
∗((i32∗)(sp + addressx)), we will be using sp[i32, x] for simplicity.
f : (ctx: context*) {

sp := push_frame(SP_SIZE);
sp[i32, x] = g(ctx);
sp[i32, y] = w(ctx);
ret : i32 = sp[i32, x] + sp[i32, y]
pop_frame(sp);
return ret;

}

The result of the Continuations Pass for the example above should look
something similar to:

f : (ctx: context*) {
sp := push_frame(SP_SIZE);
t1 := g(ctx);
c1 :: (t1 : any*, cont_ret: any*, ctx: context*, sp: any*) -> unit {

sp[i32, x] = value_of(cast(i32*, t1)); // same as *((i32*)(t1)) in C
t2 := w(ctx);
c2 :: (t2: any*, cont_ret: any*, ctx: context*, sp: any*) -> unit {

sp[i32, y] = value_of(cast(i32*, t2));
save(cast(i32*, cont_ret), sp[i32, x] + sp[i32, y]);
return 0;

}
c2(cast(any*, &t2), cont_ret, ctx, sp);
return 0;

}
cont_ret: i32 = 0;
c1(cast(any*, &t1), cast(any*, &cont_ret), ctx, sp);
pop_frame(sp, SP_SIZE);
return cont_ret;

}

3.2.4. Bubbling Pass

The last step of the pipeline is the insertion of the bubbling and yielding
checks and logic, bubbling is the process in which we interrupt computations and
save the continuations such that they can be resumed later. Remember that in the
Continuations Pass, we split the functions on each possible yielding point creating a
bunch of continuation lambda functions that have a common interface. Those points
are where we insert yielding checks, such that:

1. If we’re at a function call that precedes a prompt function invocation we
ignore and continue, so no checks are inserted at this program point.

2. If we’re at a call that doesn’t precedes a prompt lambda call, we insert
an if statement that checks if we’re yielding using the context object,
remember that this call is followed be a continuation call in the form
cidx(&t, promptret, ctx, sp). Inside the ifstatement, the body should be re-
sponsible for bubbling the continuation up the call stack, this is done by
creating a continuation object that should have:

(a) A valid reference to the current stack frame.
(b) The size of the actual type of contret. Remember that the signature

of the continuation function have contret with type ∗any, by storing
its size in the continuation object, we can allocate a buffer to store the
value of promptret latter without the original type.

(c) During a resume operation, a prompt lambda function may have a
slightly different treatment than a continuation lambda function, so we

also store a flag that holds if the continuation function being stored is
a prompt or a continuation lambda, remember that both of them have
the same interface, so they can all be stored within the continuation
object.

(d) A pointer to the lambda handler, this is just the continuation lambda
or the prompt lambda created on the previous passes that is called
after the current point. In case the current call is a continuation, then
we have no calls after it, in that case, we just set the function handler
pointer to null. In the case the current scope is inside a prompt
function, then all lambda handlers are set to point to the prompt
function itself, that is, inside a prompt function, we never bubble a
continuation lambda, because even though we create continuations for
prompt lambda functions, every time we yield from a handler, we want
to execute it from the start, not from the point where computation was
interrupted, because we may be yielding to a handler that is catched
before that point.

Within the body of the if statement, we also save the continuation object in
a linked list on the context object and insert a return statement with a default value.
It is important to note that we also include a check for continuation calls that results
in a null value being passed as the function handler pointer. This check is necessary
because we may call a popframe and we do not want to free the current stack frame
memory before we handle the effect that caused the yielding process to start. This
is because we may need the frame to resume the computation. To signal that there
is nothing left to run at the continuation point, we simply set the handler to zero.

It is important to note that semantically, this process saves the call stack
in a format that can be reconstructed after the yielding process finishes. This is
also the reason why we do not insert the yielding check in functions that precede a
prompt function call. This is because the yielding process may stop at that point
and the effect will be handled there. If we did not do this, we would yield indefinitely,
continually popping the entire call stack.

After inserting those yielding checks, we also lift all the local lambdas to the
global context, this is done by adding the name of the enclosing function at the
beginning of the inner function.

Here is a small cut so we can see what those checks looks like:
f_c0 :: (_ : any*, cont_ret: any*, ctx: context*, sp: any*) -> unit {

...
}

f :: (ctx: context*) -> i32 {
sp := push_frame();

g(ctx);

yielding0 := is_yielding(ctx);

if yielding0 {
frame : any* = sp;
is_prompt : i32 = 0
handler : (any* × any* × context* × any* -> unit)* = &f_c0;
retsize : i32 = sizeof(i32)
bubble(frame, is_prompt, retsize, handler);
return 0;

}

cont_ret : i32 = 0;

f_c0(0, (any*)&cont_ret, ctx, sp)

yielding1 := is_yielding(ctx);

if yielding1 {
frame : any* = sp;
is_prompt : i32 = 0
retsize : i32 = sizeof(i32)
bubble(frame, is_prompt, retsize, 0);
return 0;

}

pop_frame();
return 0;

}

4. Conclusion
After all the passes described above finish they execution, we are going to have

an representation that can trivially be converted to C or C++ code, the resulting IR
and C++ code for our first example will be added on the Appendix.

5. Future Work
For future work, we still need to fix memory management issues during

resumptions, because they are leaking on the current implementation. We can also
try to just allocate the stack frames on the default C stack, instead of allocating
them on the heap, and only copy the data to the heap during continuation bubbling,
this may lead to some gains since most effects can be handled locally if the last
defined handler is tail resumptive and can be found quickly by using a hashmap in
the context object [Xie and Leijen 2021].

A bad design decision was to perform resumptions using the resume operation,
like in resume(one) in our first example. In the future, if we want to support nested
handlers, we need to pass the continuation object to the effect handler function
directly instead of calling it implicitly with resume.

Our current implementation of the resume operation also needs more testing

and probably some rewriting, it will probably break on more complex situations
where we call nested continuations.

The Stack Frame Allocation Pass can also be rewritten to use a more precise
analysis, like Stack Coloring, this can decrease the memory used by each function.

We also need to figure it out how we’re going to handle references, and what
the semantics for them will be, because if we’re allowed to mutate what is being
referenced on a continuation, calling the continuation multiple times can lead to
different results, given the same input. This can be fixed by making references
immutable on program paths that may be a part of a continuation, as well as only
allowing one shot continuations, or completely ignoring the problem by flexing the
definition for continuations on the language.

References
The Koka programming language. https://koka-lang.github.io/koka/doc/

index.html.
The TLSF allocator. http://www.gii.upv.es/tlsf/.
Alex Reinking, Ningning Xie, L. d. M. and Leijen, D. Perceus: Garbage free reference

counting with reuse.
Pretnar, M. (2015). An Introduction to Algebraic Effects and Handlers. Faculty of

Mathematics and Physics University of Ljubljana Slovenia.
Xie, N. and Leijen, D. (2021). Generalized evidence passing for effect handlers:

Efficient compilation of effect handlers to c. ACM Program. Lang. 5, ICFP, Article
71 (August 2021).

