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Abstract

In this work, we aim to perform auditory source localization in images. We
want not only to estimate which objects in the scene are making the annoying
sound but also to infer how their sounds interact with the environment. To
achieve that, we propose a methodology that uses a classification task and
Class Activation Mapping for doing the PA localization, and a pipeline com-
posed of a depth estimation neural network and a sound propagation library
for estimating the PA propagation on the environment. Our experiments show
that our method achieves satisfactory auditory source localization, and it can
generate a map that represents how the annoying sound is propagating in the
scene.

1 Introduction

When perceiving the world, human beings often rely on multiple modalities to make
sense of their experiences. With the growth of video sharing social networks (e.g.
Youtube), an enormous amount of audio-visual data is available. Thus, many meth-
ods are exploring these two modalities from videos to accomplish tasks such as audio
separation [1, 2, 3, 4, 5, 6], audio source localization [1, 7, 6, 8] and cross-modal
retrieval [8, 9].

Auditory annoyance is linked to inciting negative psychological and physiological ef-
fects on people [10, 11]. Knowing where this feature in an image comes from can help
intelligent systems take actions to reduce the annoyance for humans in several real-
world applications. For instance, intelligent car systems can take control of windows
position or vehicle speed to make the ride more pleasant to the driver or passenger
if it detects annoying signals coming from outside. The auditory annoyance can
be calculated by a metric proposed by Zwicker et al. [12], called Psychoacoustic
Annoyance (PA). In our work, we aim to combine sound and visual data to localize
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Figure 1: Our ultimate goal is to generate a heatmap per frame, indicating PA
levels of the sounds emitted by the regions of the image, taking into consideration
the sound propagation dynamics estimation.
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annoying sound sources in images. Not only that, we also want to consider the way
sound propagates in the environment to create a better understanding of the PA
distribution in the scene (see Fig. 1).

Our task is, given an input image and audio pair, to localize where the annoying
sounds are coming from. We want to not only to estimate which objects in the scene
are making the annoying sound but also to infer how their audio waves propagate in
the environment. With that, we can also apply our method in a frame-based manner
to creating more pleasant first-person videos, emphasizing the least annoying sound
sources.

In POC I, we extended the method of Zhao et al. [6] and it led us to a better
understanding of the process of localizing sounds in videos. Although we couldn’t
evaluate the sound propagation, the results have shown that the methodology we
extended was still able to separate sounds well with our modification. Even though
we believe the approach we used can be improved to get us closer to solving the
problem, we invested our efforts in creating a novel PA Propagation Map extraction
pipeline.

This document is organized as follows. In Section 2, we review related work in
both sound localization and audio-visual source separation tasks. In Section 3, we
present our methodology that is able to accomplish this project’s goal. In Section
4, we present our experimental setup, as well as both quantitative and qualitative
results. Finally, in section 5 we summarize our method and contributions. We also
propose new research directions that can use this work as a starting point.

2 Related Work

2.1 Self-supervised Learning

Our method will be based on the idea of learning features by solving a task that
can use the structure of the input data as its training labels. In other words, the
training process occurs in a supervised manner, but without any human interference
on the labels themselves.

2.2 Sound Localization

Recently, there has been much progress in using sound and visual signals to extract
information from videos. One of the main tasks in this area is sound localization.
This task consists of highlighting regions of an image or set of images that correspond
to a given sound signal. Accomplishing this localization can be challenging for many
reasons (for instance, the sound source is not present in the image, occlusion, noise,
etc.).

Arandjelović and Zisserman [8] performed sound localization in images by using an
architecture that takes an image and 1-second audio as input and outputs whether
they are correspondents or not. They extract local region-level image descriptors
and compute a similarity score between the audio and each descriptor. The authors’
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approach can retrieve the sound localization image map by evaluating which region
contributed the most to the correspondence score.

The work of Owens et al. [1] accomplishes sound localization by using a method
called class activation map (CAM). The CAM method assigns a probability value
to a space-time video patch, representing how likely it is to be a sound source.

In a different approach, Zhao et al. [6] produce a pixel-level sound localization, in
which each pixel in the image has a unique sound that is computed by an audio
synthesizer network. Their method generates a mask for a pixel to be applied to the
input sound wave so that the resulting spectrogram corresponds to the audio of that
specific pixel. They achieve sound localization by calculating the sound intensity of
the pixels, creating a map that highlights the audio sources.

2.3 Audio-Visual Source Separation

Methods using visual information to help with the sound separation task have be-
come more popular, especially in the speech separation task.

The work proposed by Ephrat et al. [3] presents a model for enhancing the speech of
desired speakers in a video. The speech enhancement is accomplished by extracting
audio and visual features from the input video and producing audio masks that, when
applied to the original audio, produce a clean audio signal for each speaker. Their
method relies on having all faces in the frame, with a limited position spectrum,
without occlusion in order to extract their speech audio signal.

Gao et al. [2] propose a framework to learn object sounds from unlabeled videos.
They are able to separate object-level sounds by learning audio bases from an unsu-
pervised step, and then a basis dictionary is built. When a new input video is given
to their method, it visually detects the objects and retrieves their respective bases
in the dictionary. These bases are used to guide the network to factorize the audio
input and produce the separate audio signals for each object.

In Zhao et al. [13], the authors improved their previous results by also considering
motion of objects in the scene. The method exploits the coherence of signals from
both audio and video from a large quantity of unlabeled videos. The results were an
overall improvement over the last object localization and sound separation method.

Gao et al. [14] propose a new training paradigm for separating audio sources from
unlabeled videos. Their method is able to disentangle sounds in realistic test videos.

Although these methods achieve satisfying results in the sound separation task, they
all fail in estimating the sound propagation in the environment. In this work, we
aim to generate a auditory annoyance heatmap considering the sound interaction in
the environment.
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3 Methodology

3.1 Psychoacoustical Annoyance Metric (PA)

One of the first steps of our methodology is to calculate the PA value for sounds. The
acoustic annoyance of a sound is related to some psychoacoustical indices described
by Zwicker et al. [12]. These indices can be briefly described as:

• Fluctuation and Roughness : these indices measure the modulation of a signal
over the time. A modulated signal with higher values for these indices tends
to be more unpleasant.

• Loudness : this property is based in perceived loudness and it is based on
human subject studies. It measures how loud people with normal hearing
perceive a sound.

• Sharpness : it is calculated by a weighted sum of specific loudness levels in
different bands. A sound with higher sharpness is more unpleasant.

The PA value can be calculated by a funcion of these characteristics as follows:

PA = N5

(
1 +

√
ω2
S + ω2

FS

)
, (1)

ωS = 1[S > 0]× (1.75− S)log(N5 + 10), (2)

ωFS = 2.78×N−0.4
5 × (0.4F + 0.6R), (3)

where N is the loudness, N5 is the 95th percentile of loudness, S is the sharpness, F
and R are fluctuation and roughness respectively, and 1[X] is the indicator function,
that evaluates the predicate X, returning 1 if it is true and 0 otherwise.

3.2 PA Propagation Map Extraction Pipeline

Our method is based on finding the PA sound source in the image plane and project-
ing it into a 3-D scene so we can estimate the audio propagation in the real world.
The localization is done by training a VGG19 architecture for classifying images
into levels of auditory annoyance, using the corresponding audio and its PA value
to supervise such training. The 3-D estimation is done by using a Convolutional
Neural Network architecture to estimate the depth information from the scene. A
sound simulation framework is then used to get the propagated sounds for each 3-D
point of the environment that corresponds to a pixel in the image and calculate the
PA for them. Figure 2 illustrates the main steps of our approach.

3.2.1 PA Localization

Since one of the essential parts of our methodology is to estimate where the annoying
sound source is coming from in the image plane, we propose a localization estima-
tion method based on Class Activation Mapping (CAM). We use a VGG19 [15]
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architecture to create a classifier that has as inputs RGB images and predicts how
annoying the acoustic environment of the scene portrayed in the image is. The local-
ization is achieved by training the classifier using the PA value for the corresponding
audio from each image as supervision. After our model is trained, we extract the
CAM from the last convolutional layer using the method from [16]. The Grad-CAM
method uses the gradients backpropagated into the network, corresponding to the
class it is predicting, to estimate the most activated features in the image. Our
premise is that if the model learns well enough, there should be a correspondence
between objects in the scene with the acoustical annoyance classification. These
objects or regions of the image are a good estimation of where the sound source is
coming from. The activation map extracted gives a rough estimation of where the
object emitting the annoying sound is.

PA Estimation Module. In order to supervise our training, we must extract the
PA values from each sound in the training dataset. We do that by creating a module
that receives audio signals of variable length and outputs a PA value corresponding
to each audio signal. The PA is calculated using equations 1-3 for each second of
the audio. The final value is the average the annoyance levels from every second of
the input sound signal.

Peak Finding Module. After the CAM is extracted, we use a peak finding al-
gorithm that takes a two-dimensional array and finds all local maxima by simple
comparison of neighboring values. In this work, we are limiting the number of peaks
to one, and thus, by taking the highest peak, we always suppose that there is only
one annoying sound source in the scene.

3.2.2 Depth Estimation

In order to move towards understanding the 3-D scene, we used the depth estimation
model proposed by Godart et. al., monodepth2 [17]. The used network takes a single
color input It and produces a depth map Dt using a U-Net as the main component.
Given that the model was trained using a stereo camera setup as supervision, and
given the parameters of the cameras used for training, we are able to generate our
depth map in meters. In this way, for each pixel (x, y) in the input image, we have
its value Z for the estimated distance from the image plane.

3.2.3 3-D Peak Localization

Given that in this step of the pipeline, both peak localization in the image plane and
the depth estimation are calculated, we now want to estimate where the peak is in
the real world scene. It is important to note here that these are all rough estimates
of the scene understanding.

From camera to world coordinates. Since we have a depth estimation from
each pixel in the image, we can estimate their relative positions in the world if we
determine a focal length for the camera capturing that scene. By using an arbitrary
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Figure 2: Our methodology is composed of three main stages: We first localize
the sound source by extracting the class activation map from the last convolutional
layer of a VGG19 that was trained to classify images into levels of Psychoacoustic
Annoyance (PA). Then, we extract depth estimation values for each pixel of the input
image and create a 3-D map of all scene points. Lastly, we use the 3-D information
to propagate the sound using a sound simulation environment and calculate the PA
from the sounds generated for each pixel to compose our final PA Propagation Map.

focal length of the camera, we can use triangle similarity calculation to estimate the
final (X, Y, Z) coordinates of each pixel in the real world.

Sound Propagation Module. We use the pyroomacoustics library [18] to do the
sound propagation simulation. The method used receives as input the sound source
position and microphone positions in 3-D space, as well as the original sound wave.
We create an anechoic room that is large enough to fit the points estimated from
the input image. We do that by creating a cubic room of initial size 1m3, and we
double the size of its dimensions until all the points are contained in it. A simulation
is then made to generate the propagated audio in each microphone, resulting in an
audio wave per 3-D point.

3.2.4 PA Propagation

Finally, we calculate the PA values from each of the pixels’ audios, and we back-
project the values into a heatmap. This final heatmap is what we call our PA
Propagation Estimation Map.

4 Experiments

In this section, we investigate the performance of our method evaluating it both
qualitatively and quantitatively on different image-audio pairs.
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4.1 Experimental Setup

Dataset We compose our testing dataset for the framework from images extracted
from the Sound Localization dataset proposed by [19]. The dataset is composed of
5,000 image-sound pairs with bounding box annotations from 3 different annotators
each. Each annotation is a bounding box and a label that defines it as “object” or
“environment”, the human perception of whether the sound is coming from an object
present in the scene projection in the image or from an outside and more abstract
source, such as the sound of rain hitting the floor or traffic noises.

Metrics To evaluate our localization method, we compute how many times our
estimated annoying sound source is inside the annotated bounding box from the
image. Since we only estimate one annoying sound source in the scene, and it is
represented by a single pixel, we check if the pixel coordinates in the image is inside
the annotated bounding box, consisting of a hit.

Implementation Details In our experiments, we use an extension of the UFMG
Dataset [20], proposed in POC I, to train our localization network. The dataset
is composed of 11 egocentric videos with approximately 20,000 frames each. To
compose our training data, we randomly selected 5,000 frames from each video and
calculated the PA for its corresponding audio segment. We ended up with a training
set of 55,000 image-PA pairs. To simplify our learning process, we categorize frames
based on their annoyance value range. We use the pre-trained weights from the
VGG19 and fine-tune the classification model by changing the last fully connected
layer into having as output a 10-class probability array.

4.2 Results

Quantitative Results Table 1 shows the results in terms of the hit rate in our
test set. For our method to get a hit, the predicted localization, i.e., the pixel
with the highest value from the CAM, has to be inside the annotated bounding box.
Although our method is straightforward to train and requires almost no modification
from existing architectures, we were able to fairly localize sound sources in the scene
with an average higher than 50% for all subsets. We emphasize that our method
is not concerned with every sound source themselves but only the annoying ones.
That means that we can look for better ways to analyze these localization results
based on the PA feature.

Qualitative Results Figure 3 depicts our qualitative results. For each input
image, we show the CAM, Depth Estimation, and PA Propagation Map estimated
by our method. The results here show that we can create good quality sound
source localization estimation and, given a satisfactory depth estimation, we are
able to create a map that estimates how high the PA is for each scene point. We
emphasize that the final map is heavily dependent on both peak localization and
depth estimation processes. If one of these two methods fail, either the sound
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Regions Hit Total Regions Hit Rate (%)

S1 231 500 46.2
S2 247 500 49.4
S3 289 500 57.8
S4 284 500 56.7

Table 1: Quantitative results of our localization method. We selected 4 sets from
our testing dataset to compose our localization evaluation set. For each image on
the set, there is exactly one annotated ground-truth region. Our method has an
average of 52.53% in hit rates for all sets.

Input Image CAM Depth Estimation
PA Propagation

Map Input Image CAM Depth Estimation
PA Propagation

Map

Figure 3: Qualitative results for our pipeline steps in 8 image-sound pairs from
the testing dataset. The source localization is shown in the CAM column, and the
Depth Estimation is used to recreate a 3-D environment. The ultimate goal of our
methodology is to generate a PA Propagation Map of the scene that can enable the
understanding of the acoustic scenario.

source will be in the wrong location for the sound propagation estimation, or the
environment will be poorly recreated.

5 Conclusions

In this work, we proposed a novel methodology to estimate the Psychoacoustic
Annoyance localization and propagation in the environment using a single input
image and audio pair. We used ideas from sound localization methods to propose
our PA localization method using a classification task and Class Activation Mapping.
We also present a method of using depth estimation information to estimate sound
propagation in an environment given a 2-D image. Our results show that the CAM
extraction can be used to localize annoying sound sources in input images by training
a CNN classifier based on the scene annoyance levels. We also show the benefits of
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using the 3-D estimation to understand the scene better and propagate the audio
and its features accordingly.

Future Work We understand that to build a more robust method, we can con-
sider multiple sound sources in our estimation pipeline since our sound propagation
module can capture the interaction between multiple audios. As a future research
direction, we expect that the time consumption can be reduced by utilizing our
method as a supervisor for an end-to-end architecture that is able to estimate the
PA propagation directly.
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