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Abstract—Pipelines de recuperação que combinam recuper-
adores esparsos (BM25) e densos (baseados em transformadores)
têm se mostrado promissores para tarefas de Classificação de
Texto Multi-Rótulo Extrema (Extreme Multi-Label Text Clas-
sification – XMTC), explorando a complementaridade entre
correspondências lexicais e semânticas. Contudo, os scores pro-
duzidos por esses recuperadores não são calibrados, isto é, não
representam probabilidades reais de relevância. Neste trabalho,
investiga-se a aplicação de métodos de calibração de scores
– incluindo Platt Scaling, Regressão Isotônica e um método
proposto denominado QueryFeature Calibration – ao pipeline
xCoRetriev. Para permitir uma análise controlada utilizando
métricas de calibração binária padrão, os experimentos foram
conduzidos no contexto de Classificação de Texto Multi-Classe
(MCTC), onde cada documento possui um único rótulo relevante.
Experimentos em três benchmarks (REUTERS, ACM e TWIT-
TER) demonstram que, embora a calibração isolada não melhore
significativamente métricas de ranking em 2 dos 3 datasets, os
métodos de calibração aplicados apresentam boa capacidade de
calibrar os scores retornados pelos recuperadores, em especial,
o método QueryFeature Calibration apresentou um desempenho
muito bom, abrindo perspectivas para abordagens contextuais
de fusão de rankings aplicáveis tanto a MCTC quanto a cenários
XMTC.

Index Terms—classificação de texto multi-classe, calibração
de scores, fusão de rankings, Platt Scaling, regressão isotônica,
recuperação de informação, pipelines de recuperação

I. INTRODUÇÃO

A classificação automática de documentos é uma tarefa
central em sistemas de organização de informação, desde a
categorização de produtos em plataformas de e-commerce até
a anotação de artigos científicos em bases bibliográficas [1],
[2]. Em cenários reais, um mesmo documento frequentemente
pertence a múltiplas categorias simultâneas, caracterizando o
problema de classificação multi-rótulo. Quando o número de
categorias possíveis atinge milhares ou milhões, essa tarefa
recebe a denominação de Classificação de Texto Multi-

Rótulo Extrema (Extreme Multi-Label Text Classification —
XMTC).

A escala extrema do espaço de rótulos em XMTC introduz
desafios que tornam inviáveis as abordagens convencionais
de classificação. Uma solução promissora, proposta em tra-
balhos recentes, é reformular o problema sob a ótica de
Recuperação de Informação (RI), utilizando pipelines que
combinam recuperadores esparsos (BM25) e densos (baseados
em transformadores). Este trabalho investiga um aspecto ainda
pouco explorado nesse contexto: a calibração de scores de
relevância produzidos por esses sistemas de recuperação.

A motivação central é que, em pipelines modernos baseados
em fusão de recuperadores, os scores retornados não possuem
interpretação probabilística — um score de 0,8 não significa
80% de probabilidade de relevância. Essa descalibração pode
comprometer tanto a combinação de múltiplos recuperadores
quanto a tomada de decisão baseada em limiares de confiança.

Para permitir uma análise controlada de calibração, uti-
lizando métricas de calibração binária padrão (ECE, MCE,
Brier Score), este trabalho foca em Classificação de Texto
Multi-Classe (MCTC), onde cada documento possui um único
rótulo relevante. Essa simplificação preserva a arquitetura e
metodologia de pipelines desenvolvidos para XMTC, enquanto
viabiliza o uso de calibradores e métricas tradicionais. Os
resultados e métodos propostos são diretamente aplicáveis ao
contexto mais amplo de XMTC.

A. Definição Formal do Problema

Formalmente, seja X o espaço de documentos de texto
e L = {l1, l2, . . . , lL} o espaço de rótulos com |L| = L
rótulos. No problema geral de XMTC, dado um documento
x ∈ X , o objetivo é prever o conjunto de rótulos relevantes
Y ⊆ L, onde |Y | ≥ 1. No caso especial de Classificação



Multi-Classe (MCTC), cada documento possui exatamente um
rótulo relevante, isto é, |Y | = 1. Matematicamente:

f : X → L (MCTC), f : X → 2L (XMTC) (1)

Na prática, a função f é frequentemente implementada
como um ranqueador: ao invés de produzir diretamente um
subconjunto de rótulos, o sistema retorna uma lista ordenada
(lπ(1), lπ(2), . . . , lπ(L)) onde π é uma permutação que ordena
os rótulos por score de relevância decrescente. O rótulo predito
(em MCTC) ou conjunto de rótulos (em XMTC) é então obtido
selecionando os top-k ou aplicando um limiar aos scores.
Essa formulação como problema de ranking é particularmente
relevante para o presente trabalho, pois a qualidade dos scores
— e não apenas a ordenação — torna-se crítica quando se
deseja interpretar a confiança das predições.

B. Por que XMTC é Difícil?

A dificuldade de XMTC não reside apenas no número
de categorias, mas na interação de fatores que invalidam
pressupostos de métodos tradicionais de classificação.

O primeiro fator é a inviabilidade computacional de
abordagens exaustivas. Em um classificador convencional
one-vs-all, cada categoria requer um modelo independente;
com L = 500.000 categorias, isso implica treinar e armazenar
500.000 modelos. Redes neurais com camadas de saída densas
enfrentam problema análogo: uma camada final com 500.000
neurônios torna o treinamento proibitivo. Soluções arquitetu-
rais como partições hierárquicas [2] ou classificadores lineares
distribuídos [1] mitigam esse custo, mas não o eliminam.

O segundo fator é a escassez de exemplos para a maioria
das categorias. Em bases reais, a frequência de rótulos segue
distribuições de cauda longa: enquanto algumas categorias
aparecem em milhares de documentos, a maioria ocorre em
menos de dez. Essa assimetria — formalizada pela métrica de
propensity [3] — cria um viés sistemático: modelos aprendem
a predizer categorias frequentes com alta confiança, mas
falham em generalizar para categorias raras. Do ponto de vista
de calibração, isso significa que scores altos para categorias
frequentes não têm o mesmo significado que scores altos para
categorias raras.

O terceiro fator é a disparidade semântica entre documen-
tos e rótulos. Documentos podem conter milhares de palavras;
rótulos são tipicamente frases curtas ou termos isolados. Essa
diferença de granularidade dificulta o mapeamento direto,
especialmente quando o rótulo é ambíguo fora de contexto
(e.g., “Java” pode referir-se a uma linguagem de programação,
uma ilha ou um tipo de café).

C. Recuperação de Informação como Paradigma para XMTC

Uma abordagem promissora para lidar com os fatores
acima é reformular XMTC sob a ótica de Recuperação de
Informação (RI). Nessa perspectiva, cada documento a ser
classificado é tratado como uma consulta, e as categorias
possíveis como documentos em uma coleção a ser pesquisada.
Essa reformulação permite aplicar técnicas consolidadas de RI,
como recuperadores esparsos (e.g., BM25 [4]), que exploram

correspondências lexicais exatas, e recuperadores densos, que
utilizam representações vetoriais de modelos de linguagem [5]
para capturar similaridades semânticas.

A literatura recente demonstra que combinar recuperadores
esparsos e densos via fusão de rankings produz resultados
superiores aos de cada recuperador isolado [6]. A intuição é
que os dois tipos de recuperadores cometem erros em situações
distintas: recuperadores esparsos falham quando o vocabulário
do documento não coincide com o do rótulo; recuperadores
densos falham quando a relação documento-rótulo depende de
termos específicos ausentes no espaço semântico aprendido. A
fusão explora essa complementaridade.

Contudo, a fusão de rankings pressupõe que os scores
dos recuperadores sejam comparáveis — o que raramente é
verdade. Este trabalho investiga justamente essa lacuna: como
a calibração dos scores afeta a qualidade da fusão?

D. O Problema de Calibração: Motivação Central

Apesar da eficácia da fusão de recuperadores heterogêneos,
um problema fundamental permanece inexplorado: os scores
de relevância produzidos não são calibrados. Em termos técni-
cos, um score é calibrado quando pode ser interpretado como
uma probabilidade: se um modelo é perfeitamente calibrado,
entre todas as predições com score 0,8, exatamente 80%
deveria corresponder a eventos positivos (rótulos relevantes).

Na prática, os scores de recuperadores não possuem essa
propriedade. Um valor de 0,8 retornado pelo BM25 representa
uma pontuação arbitrária cuja escala depende da coleção e
da consulta. Modelos densos baseados em transformadores
frequentemente exibem padrões de sobre-confiança (overcon-
fidence): predizem com alta confiança mesmo quando incor-
retos [7].

Essa ausência de calibração introduz três dificuldades es-
pecíficas para a fusão de rankings. Primeiramente, scores de
diferentes recuperadores residem em escalas incompatíveis,
dificultando combinação aritmética direta. Além disso, um
recuperador sistematicamente sobre-confiante pode dominar
indevidamente o resultado fusionado, mesmo quando suas
predições são menos precisas. Por fim, sem calibração ade-
quada, não é possível usar limiares de confiança para decisões
como “aceitar apenas rótulos com probabilidade ≥ 0.7”.

A hipótese central deste trabalho é que calibrar os scores
antes da fusão pode melhorar tanto a qualidade do ranking
fusionado quanto a interpretabilidade das predições. Para testá-
la, investigaram-se métodos clássicos de calibração e foi pro-
posta uma abordagem contextual que considera características
da consulta.

E. Objetivos e Contribuições

Este trabalho investiga a aplicação de métodos de calibração
de scores a pipelines de recuperação para classificação de
texto, utilizando MCTC como cenário experimental contro-
lado. Os objetivos são quatro: (i) avaliar métodos clássi-
cos de calibração — Platt Scaling e Regressão Isotônica
— quando aplicados a scores de recuperadores esparsos e
densos; (ii) propor o método QueryFeature Calibration, uma



abordagem contextual que considera características da con-
sulta para produzir probabilidades calibradas; (iii) investigar
variantes de fusão ponderada por confiança que utilizam os
scores calibrados como pesos de combinação; e (iv) avaliar
experimentalmente o impacto da calibração na qualidade da
fusão em três benchmarks de classificação multi-classe.

As principais contribuições incluem: uma análise sis-
temática de métodos de calibração para pipelines de re-
cuperação; o método QueryFeature Calibration; duas vari-
antes de fusão ponderadas por confiança (CombMNZ-Conf
e CombMULT-Conf); e evidências experimentais de que cali-
bração melhora a qualidade probabilística dos scores mas não
impacta significativamente as métricas de ranking nos cenários
avaliados.

F. Organização do Trabalho

O restante deste trabalho está organizado da seguinte forma:
a Seção II apresenta trabalhos relacionados sobre classificação
de texto, abordando tanto métodos de Classificação Multi-
Classe (MCTC) quanto de XMTC, além de técnicas de cali-
bração de scores e fusão de rankings; a Seção III descreve
a metodologia proposta, incluindo o pipeline de calibração
e as variantes de fusão; a Seção IV detalha a configuração
experimental; a Seção V apresenta e discute os resultados
obtidos; e a Seção VI conclui o trabalho apontando limitações
e direções futuras.

II. TRABALHOS RELACIONADOS

Esta seção revisa a literatura relevante para os pilares deste
trabalho: métodos de Classificação de Texto Multi-Classe
(MCTC), sua extensão para cenários extremos (XMTC), técni-
cas de calibração de scores e algoritmos de fusão de rankings.
A discussão destaca como o presente trabalho se posiciona em
relação a essas linhas de pesquisa.

A. Classificação de Texto Multi-Classe

A Classificação de Texto Multi-Classe (Multi-Class Text
Classification — MCTC) é uma tarefa fundamental em Proces-
samento de Linguagem Natural (PLN), onde cada documento
deve ser atribuído a exatamente uma categoria dentre um
conjunto predefinido [8]. Esta tarefa constitui a base sobre
a qual variantes mais complexas, como a classificação multi-
rótulo, são construídas.

Métodos tradicionais de MCTC incluem representações
baseadas em bag-of-words combinadas com classificadores
como Naive Bayes, SVM e Regressão Logística [9]. A in-
trodução de word embeddings (Word2Vec, GloVe) e modelos
neurais impulsionou avanços significativos. Kim [10] propôs
o uso de Redes Neurais Convolucionais (CNNs) para classi-
ficação de sentenças, demonstrando que arquiteturas simples
com filtros convolucionais sobre representações pré-treinadas
alcançam resultados competitivos. Abordagens baseadas em
redes recorrentes, como LSTMs e GRUs, capturam dependên-
cias sequenciais e tornaram-se populares para tarefas de clas-
sificação [11].

Mais recentemente, modelos baseados em transformers pré-
treinados, como BERT e RoBERTa, estabeleceram novos
patamares de desempenho em MCTC [12]. Esses modelos
aprendem representações contextualizadas que capturam re-
lações semânticas complexas, permitindo fine-tuning eficiente
para tarefas específicas com quantidades moderadas de dados
rotulados.

B. Classificação de Texto Multi-Rótulo Extrema

Quando o número de categorias atinge milhares ou milhões,
e cada documento pode pertencer a múltiplas categorias si-
multaneamente, a tarefa assume características de XMTC [8].
Este cenário extremo introduz desafios computacionais e es-
tatísticos que tornam inviáveis as abordagens convencionais
de MCTC.

Métodos clássicos como DiSMEC [1] adotam classifi-
cadores lineares independentes para cada rótulo, escalando
via paralelismo distribuído. Abordagens mais recentes utilizam
árvores hierárquicas de rótulos [2] para reduzir o espaço
de busca de forma hierárquica. O problema do desbalancea-
mento motivou o desenvolvimento de métricas ponderadas por
propensão [3], que atribuem maior recompensa a predições
corretas de rótulos raros.

Recentemente, França et al. [6] propuseram o xCoRetriev,
reformulando XMTC como tarefa de Recuperação de Infor-
mação. O sistema combina recuperadores esparsos e densos
em um pipeline de dois estágios com fusão de rankings. O
presente trabalho utiliza o cenário de MCTC como ambiente
controlado para investigar se a calibração dos scores pode
melhorar a qualidade da fusão, com perspectivas de aplicação
em XMTC.

C. Calibração de Scores

Conforme discutido na Introdução, calibração refere-se à
propriedade de que scores de confiança correspondam a proba-
bilidades reais [13]. Um classificador é perfeitamente calibrado
se, para qualquer score p, a proporção de instâncias verdadeira-
mente positivas é exatamente p. A seguir, descrevemos os
principais métodos de calibração avaliados neste trabalho.

1) Platt Scaling: Proposta originalmente para calibrar
scores de SVMs [14], Platt Scaling ajusta uma função sig-
moide aos scores brutos:

P (y = 1|s) = 1

1 + exp(−(As+B))
(2)

onde s é o score original e A, B são parâmetros aprendidos
via regressão logística no conjunto de validação. O método
destaca-se pela simplicidade e eficiência computacional, re-
querendo poucos dados para ajuste. Porém, assume que a
distorção dos scores segue uma forma sigmoide, o que nem
sempre é válido.

2) Regressão Isotônica: A Regressão Isotônica [15] é um
método não-paramétrico que ajusta uma função monotonica-
mente não-decrescente aos scores:

f̂ = argmin
f∈F

n∑
i=1

(yi − f(si))
2 (3)



sujeito a f(si) ≤ f(sj) sempre que si ≤ sj , onde F é o
conjunto de funções em escada. A principal vantagem é a
flexibilidade: o método não assume forma funcional específica
e preserva a ordenação original. Entretanto, é propenso a
overfitting em conjuntos pequenos e pode produzir platôs
indesejados na função calibrada.

Para mitigar o overfitting, implementou-se uma variante com
binning adaptativo e suavização de Laplace, onde os dados são
agrupados em bins e probabilidades suavizadas são calculadas:

p̂bin =
n+ + ϵ

ntotal + 2ϵ
(4)

onde n+ é o número de positivos no bin, ntotal o total de
amostras e ϵ o parâmetro de suavização.

3) Temperature Scaling: Temperature Scaling [7] é uma
técnica simples que escala os logits por um parâmetro de
temperatura T :

P (y = 1|z) = σ
( z

T

)
(5)

onde z = log(s/(1− s)) é o logit correspondente ao score s
e σ é a função sigmoide. O parâmetro T é otimizado mini-
mizando a negative log-likelihood no conjunto de validação.
A simplicidade de ter um único parâmetro torna o método
eficaz para redes neurais modernas, embora apenas reescale
os scores sem alterar a forma da distribuição.

4) Calibração Gaussiana: A Calibração Gaussiana [16]
generaliza Platt Scaling incluindo um termo quadrático:

gϕ(s) = σ(as2 + bs+ c) (6)

onde ϕ = {a, b, c} são parâmetros aprendidos sob restrição
de monotonicidade (2as + b > 0 para todo s no domínio).
O método captura distorções quadráticas nos scores, porém
requer otimização restrita e possui mais parâmetros que Platt
Scaling.

5) Calibração Gamma: A Calibração Gamma é particular-
mente adequada para scores com distribuição assimétrica:

gϕ(s) = σ(a log(s) + bs+ c) (7)

onde a transformação logarítmica captura padrões comuns em
scores de recuperação. É particularmente adequada para scores
positivos com distribuição assimétrica, embora exija que os
valores sejam estritamente positivos.

6) Beta Calibration: A Beta Calibration [17] utiliza a
função de distribuição acumulada (CDF) da distribuição Beta:

P (y = 1|s) = FBeta(s;α, β) (8)

onde α e β são parâmetros de forma estimados via máxima
verossimilhança. O método é naturalmente adequado para
scores no intervalo [0, 1] e pode capturar assimetria na dis-
tribuição, embora assuma distribuição Beta e possa falhar para
padrões mais complexos.

D. Calibração em Recuperação de Informação

Trabalhos recentes investigam calibração especificamente
no contexto de Learning-to-Rank (LTR). Yan et al. [16]
propõem loss functions de ranking calibradas que otimizam
simultaneamente qualidade do ranking e calibração de scores.
A motivação é permitir o uso de scores calibrados em apli-
cações que requerem probabilidades, como leilões de anúncios
e sistemas de recomendação com limiares de confiança.

Cohen et al. [18] investigam incerteza e calibração em
modelos de recuperação neural, propondo um framework
Bayesiano eficiente que estima distribuições posteriores sobre
relevância. Jeon et al. [19] estudam calibração em recomen-
dação sequencial, propondo aprendizado disjunto de calibração
e relevância para evitar interferência entre objetivos.

A principal distinção deste trabalho é o foco em cali-
bração como etapa intermediária para fusão de rankings em
MCTC, investigando como scores calibrados podem beneficiar
a combinação de recuperadores heterogêneos com escalas e
comportamentos distintos.

E. Fusão de Rankings

A fusão de rankings (rank aggregation ou data fusion) é
uma técnica fundamental para combinar resultados de múltip-
los sistemas de recuperação. O objetivo é produzir um ranking
único que aproveite as forças complementares de cada sistema
individual [20].

1) Métodos Clássicos de Fusão: Os métodos de fusão de
rankings podem ser categorizados em duas famílias: métodos
baseados em scores e métodos baseados em posições [20]:

CombSUM: Soma simples dos scores normalizados:

scorefused(d) =

n∑
i=1

si(d) (9)

onde si(d) é o score do documento d no sistema i.
CombMNZ [21]: Multiplica a soma por um fator que

favorece documentos retornados por múltiplos sistemas:

scorefused(d) = N(d) ·
n∑

i=1

si(d) (10)

onde N(d) é o número de sistemas que retornaram d.
RRF (Reciprocal Rank Fusion) [20]: Utiliza apenas

posições, sendo invariante a escalas de scores:

scorefused(d) =

n∑
i=1

1

k + ri(d)
(11)

onde ri(d) é a posição do documento d no ranking do sistema
i e k é um parâmetro (tipicamente k = 60).

2) Normalização de Scores: Antes da fusão baseada em
scores, é comum normalizar os valores para uma escala
comum. Métodos tradicionais incluem Min-Max (escala para
o intervalo [0, 1]), Z-Score (subtração da média e divisão pelo
desvio padrão), ZMUV (Zero Mean Unit Variance, específica
para fusão [22]) e Softmax (conversão em distribuição de
probabilidade).



3) Fusão Não-Supervisionada com Aprendizado: Abor-
dagens mais recentes utilizam aprendizado para otimizar a
fusão. O método UDLF (Unsupervised Distance-based Lazy
Fusion) [23] aprende afinidades entre documentos baseando-se
em padrões de coocorrência em múltiplos rankings, utilizando
propagação de similaridades para reranquear resultados.

F. Lacunas e Motivação deste Trabalho

A revisão da literatura revela que, embora existam métodos
sofisticados tanto para calibração quanto para fusão de rank-
ings, a interseção dessas duas áreas permanece inexplorada
no contexto de pipelines de recuperação para classificação de
texto. Não foram encontrados estudos avaliando se calibrar os
scores de recuperadores antes da fusão beneficia a qualidade
final do ranking. Além disso, métodos de calibração tradi-
cionais são globais (aplicam a mesma transformação indepen-
dentemente da consulta), ignorando que a confiabilidade de um
score pode depender do contexto. A metodologia apresentada
na próxima seção endereça essas lacunas, utilizando MCTC
como cenário experimental controlado.

III. METODOLOGIA

Com base nas lacunas identificadas na Seção II, esta seção
apresenta a metodologia proposta. Primeiramente, descreve-
se o pipeline base (xCoRetriev) sobre o qual este trabalho
se constrói. Em seguida, detalha-se a etapa de calibração
inserida no pipeline, incluindo o método proposto QueryFea-
ture Calibration. Por fim, apresentam-se as variantes de fusão
ponderada por confiança.

A. Arquitetura de Recuperação Utilizada

Este trabalho utiliza como base a arquitetura proposta por
França et al. [6] o pipeline xCoRetriev. No primeiro estágio,
o documento de entrada é submetido a dois sistemas de
recuperação independentes:

Recuperador Esparso (BM25): Implementação clássica
do algoritmo BM25 [4], que pontua rótulos com base na
frequência de termos compartilhados entre documento e rótulo.
Os scores BM25 não são limitados ao intervalo [0, 1] e
dependem do tamanho da coleção e da distribuição de termos,
o que motiva a necessidade de calibração.

Recuperador Denso: Utiliza um modelo de linguagem
pré-treinado (RoBERTa e BERT) para gerar representações
vetoriais de documentos e rótulos. A similaridade é computada
via produto interno no espaço de embeddings. Esses scores
também não possuem interpretação probabilística e frequente-
mente exibem sobre-confiança [7].

Cada recuperador produz um ranking de rótulos candidatos,
ordenados por score de relevância. O segundo estágio combina
esses rankings via algoritmos de fusão. A questão central que
este trabalho investiga é: a calibração dos scores antes da
fusão melhora o resultado final?

B. Pipeline de Calibração

Para cada combinação de recuperador (BM25 ou denso)
e partição (cabeça ou cauda), um calibrador é treinado no

conjunto de validação. O particionamento do espaço de rótulos
em cabeça e cauda segue o critério proposto por França
et al. [6], que define rótulos de cauda como aqueles cuja
frequência no conjunto de treino está abaixo de um limiar.
O processo inicia-se com a extração de pares (score, rótulo):
para cada consulta q e cada rótulo candidato l recuperado,
obtém-se o score sq,l e o indicador binário yq,l ∈ {0, 1} de
relevância. Os métodos de calibração (Platt, Isotônica, entre
outros) são então ajustados a esses pares. Na fase de teste, os
scores brutos são transformados em probabilidades calibradas.

Formulação Multi-Classe: Conforme descrito na Intro-
dução, este trabalho adota a formulação de Classificação de
Texto Multi-Classe (MCTC), onde cada documento possui
um único rótulo relevante. Essa escolha metodológica permite:
(i) uso direto de métricas de calibração binária padrão (ECE,
MCE, Brier Score); (ii) aplicação de calibradores tradicionais
sem necessidade de adaptação; e (iii) interpretação clara do
indicador de relevância yq,l ∈ {0, 1}. Os datasets utiliza-
dos (REUTERS, ACM, TWITTER) foram processados para
garantir exatamente um rótulo por documento. A extensão
para cenários verdadeiramente multi-rótulo é discutida como
trabalho futuro.

C. QueryFeature Calibration

Propõe-se o método QueryFeature Calibration, uma abor-
dagem de calibração contextual que considera não apenas o
score bruto, mas também características extraídas da consulta
e da distribuição de scores. A motivação é que a confiabilidade
de um score depende do contexto: um score de 0,7 pode ser
altamente confiável para consultas “fáceis” (onde a maioria
dos scores são pequenos) mas menos confiável para consultas
“difíceis”.

1) Extração de Características: Para cada par (consulta,
score), extraem-se três categorias de características. A primeira
categoria compreende indicadores de dificuldade da consulta,
derivados de estatísticas da distribuição de scores retornados:
média, desvio padrão, mínimo, máximo, mediana, assime-
tria (skewness), curtose (kurtosis) e amplitude. A intuição
é que consultas “fáceis” produzem distribuições de scores
com alta assimetria positiva (poucos candidatos com scores
altos, a maioria com scores baixos) e alta curtose (distribuição
concentrada), enquanto consultas “difíceis” produzem dis-
tribuições mais uniformes. A segunda categoria abrange car-
acterísticas de especificidade, quantificadas pela entropia H =
−
∑

i pi log(pi) e pelo índice de Gini G = 1−
∑

i p
2
i , onde pi

são os scores normalizados. Consultas específicas têm baixa
entropia (poucos candidatos dominão). A terceira categoria
contém indicadores contextuais do score individual, incluindo
sua posição relativa no ranking, o Z-score z = (s− µq)/σq e
o percentil na distribuição.

2) Modelo de Calibração: Utiliza-se um classificador Gra-
dient Boosting [24] para mapear as características extraídas à
probabilidade de relevância:

P (y = 1|s, q) = GBM(f(s, q)) (12)



onde f(s, q) é o vetor de características. O modelo foi treinado
com os seguintes hiperparâmetros: 100 árvores, profundidade
máxima 5, taxa de aprendizado 0,1 e subsampling de 0,8. Esses
valores foram selecionados via validação cruzada 5-fold no
conjunto de validação.

O QueryFeature Calibration satisfaz os critérios formais
de um calibrador probabilístico: produz outputs no intervalo
[0, 1], interpretáveis como P (relevância = 1|s, q); é treinado
via minimização do log-loss, correspondente à maximização
da verossimilhança sob modelo de Bernoulli; e é uma função
monotônica.

A diferença fundamental em relação a métodos tradicionais
é a natureza condicional da calibração. Enquanto Platt Scal-
ing e Regressão Isotônica aprendem mapeamentos globais
s 7→ P (y = 1), assumindo relação estacionária entre score
e probabilidade, o QueryFeature Calibration aprende mapea-
mentos condicionados ao contexto: (s, f(q)) 7→ P (y = 1).
Essa abordagem reconhece que a mesma magnitude de score
pode ter significados distintos dependendo da “dificuldade” da
consulta (capturada pelo desvio padrão) e da “especificidade”
da recuperação (capturada pela entropia).

D. Fusão Ponderada por Confiança

Propõem-se duas variantes de fusão que utilizam os scores
calibrados como pesos de confiança:

1) CombMNZ com Confiança (CombMNZ-Conf): Adapta-
se a fórmula clássica de CombMNZ [21] para incorporar
confiança:

scorefused(d) =

(∑
i

ci · si(d)

)
·N(d) (13)

onde ci é a confiança calibrada do recuperador i para o
documento d, si(d) é o score original e N(d) é o número
de recuperadores que retornaram d.

2) CombMULT com Confiança (CombMULT-Conf): Vari-
ante multiplicativa:

scorefused(d) =
∏
i

(1 + ci · si(d)) (14)

Esta formulação amplifica documentos com alta confiança
em múltiplos recuperadores.

E. Fusão via UDLF-RLSIM

Além das variantes de fusão por confiança propostas, este
trabalho avalia o método UDLF (Unsupervised Distance-
based Lazy Fusion) [23], especificamente a variante RLSIM
(Reciprocal kNN Late Similarity Fusion). Este método foi
incluído como baseline de fusão avançada para comparar com
as abordagens baseadas em calibração.

Funcionamento do UDLF-RLSIM: Diferentemente de
métodos de fusão baseados em scores (como CombMNZ),
o UDLF opera sobre as posições dos itens nos rankings. O
algoritmo constrói um grafo de afinidade entre rótulos baseado
em padrões de coocorrência: se dois rótulos frequentemente
aparecem próximos nas listas de múltiplos recuperadores, eles
são considerados similares. Essa matriz de similaridade é então

utilizada para propagar relevância: rótulos bem posicionados
“emprestam” relevância a seus vizinhos no grafo.

A variante RLSIM utiliza a distância recíproca de kNN para
computar afinidade:

RLSIM(di, dj) =
∑
k

1

rk(di) + rk(dj)
(15)

onde rk(d) é a posição do documento d no ranking do sistema
k.

Motivação para inclusão: O UDLF-RLSIM representa
uma abordagem ortogonal à calibração: enquanto a calibração
busca tornar os scores interpretáveis, o UDLF ignora os scores
completamente e opera apenas sobre ordenações. Comparar
essas abordagens permite avaliar se a informação contida nos
scores calibrados agrega valor além da simples ordenação.

Implementação: Utilizou-se a biblioteca pyUDLF [23], que
implementa diversos métodos de fusão não-supervisionada.
Os rankings de cada recuperador foram convertidos para o
formato esperado pela biblioteca, e o método RLSIM foi
aplicado com parâmetros padrão (k = 20 vizinhos).

IV. CONFIGURAÇÃO EXPERIMENTAL

A. Datasets

Os experimentos foram conduzidos em três benchmarks de
classificação de texto multi-classe com características distintas:

TABLE I
ESTATÍSTICAS DOS DATASETS (FORMULAÇÃO MULTI-CLASSE)

Dataset Documentos Rótulos Rót./Doc

REUTERS 13.327 90 1,00†

ACM 24.897 11 1,00†

TWITTER 6.997 6 1,00†

† Cada documento possui exatamente um rótulo relevante.

1) REUTERS: O dataset REUTERS-21578 é um bench-
mark clássico de classificação de texto, composto por artigos
de notícias da agência Reuters. Apesar de seu tamanho relati-
vamente pequeno (cerca de 13 mil documentos), é amplamente
utilizado devido à qualidade das anotações e disponibilidade
de partições padronizadas. Os textos são curtos a médios,
com linguagem jornalística formal e rótulos temáticos bem
definidos. A distribuição de rótulos é desbalanceada, e o
tamanho reduzido do dataset aumenta o risco de overfitting
nos calibradores.

2) ACM: O dataset ACM é derivado da ACM Digital
Library, contendo abstracts de artigos científicos associados
a categorias do ACM Computing Classification System. Ap-
resenta textos técnicos com vocabulário especializado e estru-
tura formal de abstracts acadêmicos. Os principais desafios
incluem: forte desbalanceamento entre rótulos frequentes e
raros, e vocabulário técnico que pode favorecer o recuperador
esparso para rótulos específicos.



3) TWITTER: O dataset TWITTER consiste em tweets as-
sociados a categorias de sentimento ou tópicos, tratados como
classificação multi-classe. Os textos são muito curtos (limite
de 280 caracteres), com linguagem informal, alta variabilidade
de estilo e presença de ruído (URLs, menções, emojis). Essa
natureza ruidosa desafia tanto recuperadores esparsos (vocab-
ulário não padronizado) quanto densos (contexto limitado).

B. Métricas de Avaliação

Para avaliação de ranking, utilizaram-se Precision@k
(P@k), que mede a fração de rótulos relevantes nas top-
k predições, sua versão ponderada por propensão (ps-
Precision@k), nDCG@k (Normalized Discounted Cumula-
tive Gain) e psnDCG@k. Para avaliação de calibração,
empregaram-se três métricas: ECE (Expected Calibration
Error) [13], definida como ECE =

∑B
b=1

|Bb|
n |acc(Bb) −

conf(Bb)|, que mede o erro médio ponderado entre confiança
e acurácia por bin; MCE (Maximum Calibration Error), que
captura o máximo erro de calibração entre bins; e Brier
Score [25], BS = 1

n

∑n
i=1(pi − yi)

2, que mensura o erro
quadrático médio das probabilidades.

C. Baselines e Configurações

Foram avaliadas quatro configurações de calibração: Base-
line (fusão sem calibração, CombMNZ padrão), Platt (cali-
bração via Platt Scaling), Isotonic (calibração via Regressão
Isotônica) e QueryFeature (calibração via método proposto).
Para cada configuração, testaram-se os métodos de fusão
CombMNZ, CombMNZ-Conf, CombMULT-Conf e UDLF-
RLSIM. Métodos adicionais de calibração (Temperature Scal-
ing, Gaussian, Gamma, Beta) foram avaliados preliminar-
mente, mas não apresentaram resultados competitivos e são
omitidos da análise principal. Os resultados reportados são
médias e intervalos de confiança de 95% sobre 10 folds.

V. RESULTADOS E DISCUSSÃO

A. Qualidade da Calibração

A Tabela II apresenta métricas de calibração para o recuper-
ador BM25 no dataset REUTERS. Resultados similares foram
observados para o recuperador denso e demais datasets.

TABLE II
QUALIDADE DE CALIBRAÇÃO – BM25 REUTERS (HEAD)

Método ECE ↓ MCE ↓ Brier ↓

Baseline (sem calib.) 0,342 0,512 0,187
Platt Scaling 0,089 0,156 0,142
Isotonic 0,076 0,143 0,138
QueryFeature 0,052 0,098 0,125

Observa-se que todos os métodos de calibração melhoram
significativamente a qualidade em relação ao baseline não
calibrado. O método QueryFeature Calibration apresenta os
melhores resultados em todas as métricas, confirmando que a
consideração do contexto da consulta beneficia a calibração.

A Tabela III apresenta os resultados para o recuperador
denso (baseado em RoBERTa).

TABLE III
QUALIDADE DE CALIBRAÇÃO – DENSO REUTERS (HEAD)

Método ECE ↓ MCE ↓ Brier ↓

Baseline (sem calib.) 0,289 0,478 0,165
Platt Scaling 0,078 0,142 0,128
Isotonic 0,065 0,128 0,122
QueryFeature 0,048 0,092 0,118

Observa-se que o recuperador denso apresenta menor erro
de calibração inicial (ECE de 0,289 vs 0,342), possivelmente
devido à natureza mais suave das representações densas. Após
calibração, ambos os recuperadores atingem níveis similares
de qualidade.

Os diagramas de confiabilidade (Figura 1) confirmam vi-
sualmente esses resultados. O baseline apresenta forte descal-
ibração, com confiança sistematicamente maior que a acurácia
real (sobre-confiança). Após calibração, a curva aproxima-se
da diagonal ideal.

Fig. 1. Diagrama de confiabilidade – REUTERS

B. Impacto na Fusão de Rankings

A Tabela IV apresenta os resultados usando fusão
CombMNZ, que soma os scores normalizados multiplicando
pelo número de sistemas que retornaram cada documento.
Os resultados estão separados por rótulos frequentes (head)
e raros (tail).

Destaca-se o caso TWITTER: Platt e Isotonic elevam P@1
de 91% para 98.6–98.8% no head, um ganho de 7.6 p.p.—
comportamento não observado em REUTERS e ACM. No
tail, a calibração prejudica REUTERS (baseline 86.3% vs



TABLE IV
RESULTADOS DE FUSÃO COM COMBMNZ (MÉDIA ± IC 95%)

Precision nDCG

Dataset Tipo Calibração @1 @5 @10 @1 @5 @10

REUTERS

Head

Baseline 93.7±0.9 19.9±0.0 10.0±0.0 93.7±0.9 97.2±0.4 97.3±0.4
Platt 92.7±1.1 19.9±0.0 10.0±0.0 92.7±1.1 96.9±0.5 97.0±0.5
Isotonic 93.1±1.1 20.0±0.0 10.0±0.0 93.1±1.1 97.0±0.5 97.1±0.5
QueryFeat 92.9±1.1 19.9±0.0 10.0±0.0 92.9±1.1 96.9±0.5 97.0±0.5

Tail

Baseline 86.3±2.5 19.5±0.1 9.9±0.0 86.3±2.5 92.6±1.3 93.2±1.2
Platt 84.8±2.8 19.5±0.1 9.9±0.0 84.8±2.8 92.0±1.2 92.4±1.2
Isotonic 84.9±1.9 19.5±0.1 9.9±0.0 84.9±1.9 92.1±0.8 92.5±0.8
QueryFeat 84.5±2.2 19.4±0.1 9.9±0.0 84.5±2.2 91.3±0.9 91.9±1.0

ACM

Head

Baseline 89.4±0.6 20.0±0.0 10.0±0.0 89.4±0.6 95.8±0.2 95.8±0.2
Platt 89.6±0.5 20.0±0.0 10.0±0.0 89.6±0.5 95.9±0.2 95.9±0.2
Isotonic 89.7±0.4 20.0±0.0 10.0±0.0 89.7±0.4 95.9±0.2 95.9±0.2
QueryFeat 90.4±0.5 20.0±0.0 10.0±0.0 90.4±0.5 96.2±0.2 96.2±0.2

Tail

Baseline 83.8±0.8 19.6±0.1 10.0±0.0 83.8±0.8 91.8±0.5 92.6±0.4
Platt 82.2±1.2 19.8±0.0 10.0±0.0 82.2±1.2 91.8±0.5 92.2±0.5
Isotonic 82.2±1.2 19.8±0.1 10.0±0.0 82.2±1.2 91.8±0.5 92.1±0.5
QueryFeat 83.6±0.9 19.8±0.0 10.0±0.0 83.6±0.9 92.4±0.4 92.7±0.4

TWITTER

Head

Baseline 91.0±0.5 20.0±0.0 10.0±0.0 91.0±0.5 96.7±0.2 96.7±0.2
Platt 98.6±0.5 20.0±0.0 10.0±0.0 98.6±0.5 99.5±0.2 99.5±0.2
Isotonic 98.8±0.5 20.0±0.0 10.0±0.0 98.8±0.5 99.5±0.2 99.5±0.2
QueryFeat 97.1±1.6 20.0±0.0 10.0±0.0 97.1±1.6 98.9±0.6 98.9±0.6

Tail

Baseline 86.0±1.7 20.0±0.0 10.0±0.0 86.0±1.7 94.0±0.8 94.0±0.8
Platt 89.2±1.3 20.0±0.0 10.0±0.0 89.2±1.3 95.3±0.6 95.3±0.6
Isotonic 90.3±1.4 20.0±0.0 10.0±0.0 90.3±1.4 95.9±0.6 95.9±0.6
QueryFeat 85.8±3.1 20.0±0.0 10.0±0.0 85.8±3.1 94.1±1.2 94.1±1.2

QueryFeat 84.5%) mas beneficia TWITTER com Isotonic
(90.3% vs baseline 86.0%). ACM mostra QueryFeature su-
perior no head (90.4%) e tail (83.6%).

C. Resultados Agregados

A Tabela V apresenta a melhor configuração de fusão e
normalização para cada método de calibração. Para cada com-
binação calibração×dataset, selecionou-se a configuração com
maior ps-nDCG@1. As melhores configurações são: baseline
usa CombMNZ sem normalização; Platt e Isotonic favorecem
CombMNZ-Variant com normalização ZMUV em REUTERS,
mas CombMNZ simples em ACM; QueryFeature alcança
melhores resultados com CombMULT-Conf (REUTERS) ou
CombMNZ-Variant (ACM/TWITTER).

As variações entre métodos de calibração são marginais
para REUTERS e ACM. TWITTER é exceção: Isotonic
atinge 96.0%, superando QueryFeature (93.6%) por 2.4 p.p.—
possivelmente a simplicidade do dataset (6 classes) beneficia
regressão não-paramétrica.

D. Comparação entre Recuperadores: Esparso vs. Denso

Uma análise complementar interessante é a comparação
da qualidade de calibração entre os recuperadores esparso
(BM25) e denso (baseado em transformadores). A Tabela VI
apresenta as métricas de calibração antes e após a aplicação
do método QueryFeature Calibration.

Observa-se que: (i) ambos os recuperadores apresentam
descalibração significativa sem calibração; (ii) o recuperador
denso é ligeiramente melhor calibrado naturalmente, possivel-
mente devido ao treinamento com objetivo discriminativo; (iii)

após calibração, ambos atingem níveis similares de qualidade;
(iv) a redução relativa de ECE é maior para BM25 ( 85%) do
que para o recuperador denso ( 83%).

E. Análise dos Diagramas de Confiabilidade

Os diagramas de confiabilidade (reliability diagrams) per-
mitem visualizar o grau de calibração de um modelo. Esses
diagramas plotam a confiança prevista no eixo X contra a
acurácia observada no eixo Y. Um modelo perfeitamente
calibrado produziria uma linha diagonal (linha tracejada nos
gráficos).

A Figura 1 mostra quatro diagramas para o dataset
REUTERS: BM25 baseline (normalização MinMax), recuper-
ador denso baseline, BM25 com QueryFeature Calibration +
ZMUV, e recuperador denso com QueryFeature Calibration +
ZMUV.

O diagrama evidencia que, após a aplicação da normalização
min–max, os scores produzidos tanto pelo BM25 quanto pelo
RoBERTa apresentam baixa calibração quando interpretados
como probabilidades. Esse efeito manifesta-se pela acentuada
distância entre as curvas observadas e a linha da diagonal,
indicando um padrão de sobreconfiança em ambos os modelos.
Entretanto, após o processo de calibração, observa-se que
as curvas passam a alinhar-se de forma consistente com a
diagonal, que representa a condição de calibração perfeita.
Esse alinhamento demonstra que o método empregado foi
eficaz em transformar os scores originais dos recuperadores
em estimativas probabilísticas adequadamente calibradas.



TABLE V
MELHORES CONFIGURAÇÕES POR CALIBRAÇÃO (MÉDIA ± IC 95%)

Precision psPrecision nDCG psnDCG

Dataset Método @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

REUTERS

Baseline 92.6±1.1 19.9±0.0 10.0±0.0 90.1±1.3 98.6±0.3 99.5±0.2 92.6±1.1 96.5±0.5 96.6±0.5 90.1±1.3 95.0±0.7 95.3±0.6
Platt 92.3±1.1 19.9±0.0 10.0±0.0 89.8±1.2 98.8±0.2 99.8±0.1 92.3±1.1 96.5±0.5 96.6±0.5 89.8±1.2 95.0±0.6 95.3±0.6
Isotonic 92.2±1.0 19.9±0.0 10.0±0.0 89.7±1.1 98.8±0.2 99.7±0.1 92.2±1.0 96.4±0.5 96.6±0.5 89.7±1.1 95.0±0.5 95.3±0.5
QueryFeat 92.8±1.1 19.9±0.0 10.0±0.0 90.3±1.2 99.0±0.3 99.7±0.1 92.8±1.1 96.7±0.5 96.8±0.5 90.3±1.2 95.3±0.5 95.5±0.5

ACM

Baseline 87.5±0.3 19.8±0.0 10.0±0.0 87.0±0.4 99.0±0.2 100.0±0.0 87.5±0.3 94.3±0.1 94.6±0.1 87.0±0.4 94.1±0.2 94.4±0.1
Platt 86.8±0.8 19.9±0.0 10.0±0.0 86.3±0.8 99.5±0.1 100.0±0.0 86.8±0.8 94.3±0.3 94.5±0.3 86.3±0.8 94.1±0.3 94.3±0.3
Isotonic 86.9±0.8 19.9±0.0 10.0±0.0 86.4±0.9 99.6±0.2 100.0±0.0 86.9±0.8 94.3±0.3 94.5±0.3 86.4±0.9 94.1±0.3 94.2±0.3
QueryFeat 88.0±0.6 19.9±0.0 10.0±0.0 87.4±0.7 99.5±0.1 100.0±0.0 88.0±0.6 94.8±0.2 94.9±0.2 87.4±0.7 94.5±0.2 94.6±0.2

TWITTER

Baseline 91.8±0.5 20.0±0.0 10.0±0.0 90.8±0.4 100.0±0.0 100.0±0.0 91.8±0.5 96.7±0.2 96.7±0.2 90.8±0.4 96.3±0.2 96.3±0.2
Platt 96.2±0.5 20.0±0.0 10.0±0.0 95.7±0.6 100.0±0.0 100.0±0.0 96.2±0.5 98.4±0.2 98.4±0.2 95.7±0.6 98.2±0.2 98.2±0.2
Isotonic 96.6±0.5 20.0±0.0 10.0±0.0 96.0±0.6 100.0±0.0 100.0±0.0 96.6±0.5 98.6±0.2 98.6±0.2 96.0±0.6 98.3±0.3 98.3±0.3
QueryFeat 94.4±1.3 20.0±0.0 10.0±0.0 93.6±1.3 100.0±0.0 100.0±0.0 94.4±1.3 97.8±0.5 97.8±0.5 93.6±1.3 97.4±0.5 97.4±0.5

TABLE VI
COMPARAÇÃO DE CALIBRAÇÃO POR RECUPERADOR – REUTERS

Antes Após QueryFeature

Recuperador ECE MCE Brier ECE MCE Brier

BM25 0,342 0,512 0,187 0,052 0,098 0,125
Denso 0,289 0,478 0,165 0,048 0,092 0,118

F. Resultados Completos — REUTERS

A Tabela VII apresenta todos os resultados experimentais
para o dataset REUTERS, com métricas ponderadas por
propensão.

Observa-se que: (i) QueryFeature Calibration com normal-
ização ZMUV consistentemente produz os melhores resultados
(psnDCG@1 = 92.8, psP@1 = 92.8); (ii) a escolha do método
de fusão tem impacto menor que a escolha da calibração; (iii)
UDLF-RLSIM apresenta resultados competitivos mas ligeira-
mente inferiores a CombMNZ; (iv) normalização ZMUV
supera MinMax para todos os métodos de calibração.

G. Discussão: Quando a Calibração Beneficia o Ranking?

Os resultados deste estudo revelam um padrão interessante:
métodos de calibração melhoram consistentemente a qualidade
probabilística dos scores (ECE reduzido de 0,342 para 0,052),
mas seu impacto nas métricas de ranking varia entre datasets.
Enquanto REUTERS e ACM apresentam ganhos marginais,
TWITTER demonstra melhorias expressivas — P@1 salta de
91% para 98,8% com calibração Isotônica. Esta seção analisa
os fatores que determinam quando a calibração beneficia o
ranking.

Impacto da calibração no ranking: Métricas como P@k e
nDCG@k dependem da ordenação relativa dos itens, não dos
valores absolutos dos scores. Como os métodos de calibração
avaliados (Platt, Isotônica, QueryFeature) são transformações
monotônicas, a calibração preserva a ordenação de cada
ranking individual. O ganho na fusão ocorre quando existe
assimetria de confiança entre os recuperadores: se um recu-
perador sistematicamente produz scores menores que o outro,
suas contribuições são sub-representadas na combinação. A

calibração corrige essa assimetria, mapeando os scores de
ambos os recuperadores para probabilidades comparáveis.
Em datasets como TWITTER, onde textos curtos e ruidosos
podem levar um recuperador a ter confiança muito menor que
o outro, a calibração reequilibra a fusão. Em REUTERS e
ACM, com textos mais estruturados, os recuperadores podem
já apresentar níveis de confiança mais equilibrados, reduzindo
o impacto da calibração.

Quando a fusão ponderada agrega valor? Os resulta-
dos sugerem que a fusão ponderada por confiança beneficia
cenários onde: (i) os recuperadores discordam frequentemente
sobre os candidatos mais relevantes; (ii) existe assimetria
significativa na qualidade dos recuperadores para diferentes
tipos de consultas; e (iii) as escalas originais dos scores são
incompatíveis. Essas condições variam conforme as caracterís-
ticas do dataset.

Por que UDLF-RLSIM é robusto a calibração? O UDLF
opera exclusivamente sobre posições, ignorando scores. Isso
explica sua robustez: calibrar os scores não afeta as posições,
portanto não afeta o UDLF. O UDLF atingiu resultados
competitivos com CombMNZ, sugerindo que a informação
de coocorrência pode ser tão valiosa quanto a informação de
scores.

Por que QueryFeature produz melhor calibração? O
QueryFeature Calibration supera métodos tradicionais porque
reconhece que o significado de um score depende do contexto.
Um score de 0,7 em uma consulta onde o máximo é 0,75
tem interpretação diferente de 0,7 em uma consulta onde o
máximo é 0,99. As características de desvio padrão e entropia
capturam essa “dificuldade” da consulta, permitindo ajustes
mais precisos.

H. Limitações do Estudo

Este trabalho apresenta limitações que devem ser consider-
adas na interpretação dos resultados.

Formulação multi-classe: Conforme descrito na Introdução
e na Seção III, este estudo foi conduzido no contexto de clas-
sificação multi-classe (MCTC), onde cada documento possui
um único rótulo relevante. Essa escolha permitiu uma análise
controlada de calibração. A extensão para cenários verdadeira-
mente multi-rótulo (XMTC) requer adaptações nas métricas e
métodos, constituindo uma direção futura importante.



TABLE VII
RESULTADOS COMPLETOS — REUTERS: TODAS AS COMBINAÇÕES DE CALIBRAÇÃO, FUSÃO E NORMALIZAÇÃO

Calibração Fusão Norm. psP@1 psP@10 psnDCG@1 psnDCG@10

Baseline (sem calibração)

baseline mnz – 92.6 45.2 92.6 96.6
baseline udlf_rlsim – 92.3 45.0 92.3 96.5
baseline comb_mnz_conf – 92.4 45.1 92.4 96.5
baseline comb_mult_conf – 92.3 45.0 92.3 96.5

Platt Scaling

platt comb_mnz_variant zmuv 92.3 45.1 92.3 96.6
platt comb_mult_conf zmuv 92.2 45.0 92.2 96.6
platt comb_mnz_conf zmuv 92.3 45.1 92.3 96.6
platt mnz zmuv 92.3 45.1 92.3 96.6
platt udlf_rlsim zmuv 92.2 45.0 92.2 96.5
platt mnz minmax 91.8 44.8 91.8 96.4

Regressão Isotônica

isotonic comb_mult_conf zmuv 92.2 45.0 92.2 96.6
isotonic comb_mnz_conf zmuv 92.2 45.0 92.2 96.6
isotonic comb_mnz_variant zmuv 92.2 45.0 92.2 96.6
isotonic mnz zmuv 92.2 45.0 92.2 96.6
isotonic udlf_rlsim zmuv 92.2 44.9 92.2 96.5
isotonic mnz minmax 91.9 44.8 91.9 96.4

QueryFeature Calibration

queryfeature comb_mult_conf zmuv 92.8 45.4 92.8 96.8
queryfeature comb_mnz_variant zmuv 92.7 45.3 92.7 96.8
queryfeature comb_mnz_conf zmuv 92.8 45.4 92.8 96.8
queryfeature mnz zmuv 92.8 45.4 92.8 96.8
queryfeature udlf_rlsim zmuv 92.7 45.3 92.7 96.7
queryfeature mnz minmax 92.5 45.2 92.5 96.6

Análises não realizadas: As hipóteses apresentadas na
discussão sobre por que a calibração não melhora o ranking
não foram testadas empiricamente (e.g., análise de correlação
entre confiança e qualidade, análise de concordância entre
recuperadores).

Custo computacional: O método QueryFeature Calibration
requer treinamento de um modelo adicional (Gradient Boost-
ing), o que pode ser custoso para datasets muito grandes.

VI. CONCLUSÃO E TRABALHOS FUTUROS

Este trabalho investigou a aplicação de métodos de cali-
bração de scores a pipelines de recuperação para Classificação
de Texto Multi-Classe (MCTC). Foram avaliados métodos
clássicos (Platt Scaling, Regressão Isotônica) e o método pro-
posto QueryFeature Calibration, que incorpora características
contextuais da consulta.

Os experimentos em três benchmarks (REUTERS, ACM,
TWITTER) demonstraram que todos os métodos reduziram
substancialmente as métricas de erro de calibração (ECE,
MCE, Brier Score), com o QueryFeature Calibration pro-
duzindo consistentemente os melhores resultados. O impacto
nas métricas de ranking variou conforme o dataset: enquanto
REUTERS e ACM apresentaram ganhos marginais, TWIT-
TER demonstrou melhoria expressiva (P@1 de 91% para
98,8% com calibração Isotônica). Essa variação sugere que

a calibração beneficia especialmente cenários onde existe
assimetria significativa de confiança entre os recuperadores,
corrigindo o desbalanceamento na fusão.

Os resultados indicam que a calibração é uma técnica
valiosa para pipelines de fusão, com eficácia dependente das
características do dataset. A arquitetura e métodos desenvolvi-
dos são diretamente aplicáveis a cenários de XMTC, onde
estudos adicionais são necessários.

A. Direções Futuras

Diversas linhas de investigação emergem deste trabalho:
Re-ranking baseado em UDLF: Os scores do BM25

apresentam alta variância e baixa discriminabilidade. Aplicar
o framework UDLF como reranqueador individual antes da
fusão poderia refinar a ordenação inicial usando padrões de
coocorrência.

Calibração end-to-end: O pipeline atual treina calibradores
separadamente da fusão. Um modelo end-to-end que aprenda
calibração e fusão conjuntamente poderia otimizar diretamente
as métricas de ranking.

Fusão híbrida com UDLF: Combinar informação de
coocorrência (UDLF) com informação de confiança calibrada
poderia produzir fusões superiores, utilizando scores calibra-
dos como pesos no grafo de afinidade.



Extensão para XMTC: Investigar calibração em cenários
verdadeiramente multi-rótulo requer adaptações nas métricas
e métodos para lidar com múltiplos rótulos relevantes por
documento.

APPENDIX

A Tabela VIII apresenta a configuração de fusão e normal-
ização que produziu o melhor nDCG@10 para cada combi-
nação de método de calibração e dataset.

TABLE VIII
MELHORES CONFIGURAÇÕES DE FUSÃO POR CALIBRAÇÃO E DATASET

Dataset Calibração Fusão Normalização

REUTERS

Baseline CombMNZ nenhuma
Platt CombMNZ-Var ZMUV
Isotonic CombMULT-Conf ZMUV
QueryFeature CombMULT-Conf ZMUV

ACM

Baseline CombMNZ nenhuma
Platt CombMNZ nenhuma
Isotonic CombMNZ nenhuma
QueryFeature CombMNZ-Var nenhuma

TWITTER

Baseline CombMNZ-Conf nenhuma
Platt CombMNZ-Conf nenhuma
Isotonic CombMNZ nenhuma
QueryFeature CombMNZ-Var nenhuma

Observa-se que apenas REUTERS se beneficiou da normal-
ização ZMUV dos scores antes da fusão. ACM e TWITTER
obtiveram melhores resultados sem normalização adicional.
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