
Gabriel Santos Luz

Contrastively-trained Structured World Models
(C-SWMs): Modifications and Evaluation on

Downstream Tasks

Belo Horizonte, Minas Gerais
2020

Gabriel Santos Luz

Contrastively-trained Structured World Models
(C-SWMs): Modifications and Evaluation on

Downstream Tasks

Universidade Federal de Minas Gerais
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Orientador: Douglas Guimarães Macharet

Belo Horizonte, Minas Gerais
2020

Sumário

1 INTRODUCTION . 4

2 THEORETICAL BACKGROUND 5
2.1 Fundamental Concepts . 5
2.1.1 Basic Concepts . 5
2.1.2 Pretext Tasks . 6
2.1.3 Downstream Tasks . 7
2.2 Related Work . 7
2.2.1 Evaluation of Self-Supervised Methods . 7
2.2.2 Using Static Images . 9
2.2.3 Using Video Data . 9
2.3 Contrastive Learning . 10
2.3.1 Noise Contrastive Estimation (NCE) . 10
2.3.2 Simple Framework for Contrastive Learning of Visual Representations (SimCLR) 11
2.3.3 Video Noise Contrastive Estimation (VINCE) 12

3 CONTRASTIVE LEARNING OF STRUCTUREDWORLDMODELS
(C-SWMS) . 14

3.1 Algorithm . 14
3.2 Evaluation Metrics . 15
3.3 Why C-SWM ? . 16
3.4 Slot Contrastive Networks (SCN) . 16

4 PROBLEMS AND GOALS . 18
4.1 C-SWMs Evaluation . 18
4.2 C-SWMs Shortcomings . 18
4.3 POC 1 Goals . 19

5 METHODOLOGY . 20
5.1 Evaluation . 20
5.2 Datasets . 21
5.2.1 MNIST . 21

6 EXPERIMENTS AND RESULTS . 22
6.1 Implementation . 22
6.2 Re-evaluation on Atari Environments 22
6.3 Moving MNIST Evaluation . 23

SUMÁRIO 3

6.4 Encoder and Hidden Dimension . 23
6.5 Number of Objects . 24
6.6 Number of epochs . 27
6.7 NT-Xent Loss Function . 29
6.8 Data Augmentation . 31
6.9 Slot Attention . 32
6.10 Number of objects versus Embedding dimension 32

7 CONCLUSION . 34
7.1 Main Results . 34
7.2 Future Work . 34

REFERÊNCIAS . 35

4

1 Introduction

Supervised learning using Neural Networks has achieved great success in many Com-
puter Vision tasks. Most of this successes required large datasets with human-annotated
labels, which are expensive to gather. As a result, generating annotated examples is a
bottleneck that hinders supervised learning improvements, especially in applications that
only have small annotated datasets. In this scenario, unsupervised learning presents a
promising path for machine learning algorithms to achieve better results on many computer
vision tasks, that would require extreme human effort and cost in the supervised learning
scenario.

Among several unsupervised learning approaches, Self-Supervised Learning has been
widely researched and is now being used to achieve great results in computer vision. The
current state-of-the-art of self-supervised learning is dominated by contrastive approaches,
which surpassed various types of pretext tasks, including generative ones. The current
state-of-the-art, SimCLR [Chen et al. 2020], has achieved a top 1 accuracy on ImageNet
[Deng et al. 2009] close to the supervised state-of-the-art in 2016, but using only 10% of
the training labels.

However, there is still much to be explored, especially in the context of using video
data. Videos are a more powerful source of visual information than static images and
have not been fully explored to improve computer vision methods through self-supervision.
Videos offer spatial and temporal information, such as presenting an object from multiple
views or differentiating a moving object from the background, that can be used to get a
better understanding of the world.

In this context, the algorithm Contrastively-trained Structured World Models (C-
SWMs) [Kipf, Pol e Welling 2019] was proposed. It tries to model the current world state
using objects extracted from observations, representing it as a set of vectors, one for
each object. The algorithm learns by trying to predict the next state representation
using a contrastive loss function. It combines the successful contrastive self-supervised
learning with object based approaches, opening interesting possibilities such as applying
the contrastive loss on the level of objects, and not just of images or videos. However,
C-SWM was evaluated using ranking metrics, whose correlation with downstream task
performance is not clear, and it has not been evaluated against strong self-supervised
learning algorithms. Furthermore, the algorithm does not use data augmentation and uses
an older loss function that is different from the recent successes in contrastive learning.

The main contributions of this work are to propose a better evaluation protocol for
C-SWM and to use it to evaluate modifications that include successful ideas from recent
self-supervised learning literature. This work does not aim to validate C-SWM as a
competitive algorithm, as it will not be compared to strong self-supervised algorithms.

5

2 Theoretical Background

2.1 Fundamental Concepts

2.1.1 Basic Concepts

A survey on self-supervised visual feature learning [Jing e Tian 2020] defines important
terms, from which we take some definitions that are fundamental to our work.

• Label: A Deep Learning algorithm learns a function that maps from an input to an
output. A label is a correct output for a certain data point in a dataset.

• Human-annotated label: A label that was annotated by a human.

• Supervised Learning: The setting in which learning methods use only human-
annotated labels to learn. Here we will not differentiate between supervised and
weakly-supervised learning.

• Unsupervised Learning: The setting in which learning methods do not use human-
annotated labels.

• Self-supervised Learning: A subset of unsupervised learning, in which learning
methods use datasets automatically generated from the original data.

• Pretext Task: Tasks that are designed to train self-supervised methods. They are
used to automatically generate a dataset. An example is the task of given a grey
scale image, predict the original colorized image. Note that pairs of input and output
for this task can be automatically generated from a dataset of colorized images.

• Downstream Task: Tasks that are used to evaluate the representations learned
through self-supervised learning. Usually, the downstream tasks are the ultimate
goal the algorithm. An example is to train an algorithm to predict the next frame in
a video (pretext task) and by transfer learning apply the learned features to image
classification (downstream task).

• Representation Learning: According to [Bengio, Courville e Vincent 2013], Repre-
sentation Learning is "learning representations of the data that make it easier to
extract useful information when building classifiers or other predictors.". It is a
powerful concept in Deep Learning, in fact, one can think of each layer in a neural
network as learning a representation of its input. In our work it is a central concept
as it allows to transfer knowledge learned from pretext tasks to downstream tasks.
It is an important research area and there are many open questions.

Capítulo 2. Theoretical Background 6

• Transfer Learning: It aims to improve performance on a task A on a dataset DA by
using knowledge learned from a task B on a dataset DB, where DA 6= DB or A 6= B

[Tan et al. 2018]. One example is to train a neural network for image classification
on a large dataset and then, using the learned parameters, train it on a small dataset
for bird classification.

2.1.2 Pretext Tasks

The pretext tasks for self-supervised learning are essential and determine the method
approach. We follow [Jing e Tian 2020], which summarizes the pretext tasks in four non
exclusive categories: generation-based, context-based, free semantic label-based and cross
modal-based.

• Generation-based: Any method that uses image or video generation as a pretext
task. The task might be to generate parts or entire images.

• Context-based: These methods use pretext tasks based on context features. The
considered context can be, for example, other images in the dataset, patches of the
same image, and frames in a video. An example of a context-based pretext task is
given a set of frames from a video, the algorithm must put them in the correct order.
The labels are easily generated. A very important example are methods based on
context similarity, such as clustering ones or contrasting methods that use a loss
function that compares entities, such as the loss Noise Contrastive Estimation (NCE)
[Gutmann e Hyvärinen 2010].

• Free semantic label-based: These methods use automatically generated semantic
labels as pretext tasks. These labels could have been generated by a non-supervised
algorithm or by a game engine in a simulation. An example is to use semantic
segmentation automatically generated by a game engine to train a model to do
semantic segmentation. These methods may not be categorized as self-supervised
as they require humans to build the simulations, but they should not be discarded,
because we already have good simulators.

• Cross modal-based: These methods focus on correspondence by verifying if two
inputs are corresponding to each other. An example is to train a model to verify if a
video corresponds to a given audio.

As we want to evaluate the impact of using video data instead of static images, we
will focus on methods that can learn only from RGB images or videos. Methods that use
Ergo-motion are an example of methods that will not be included in this work, as they
require extra data.

Capítulo 2. Theoretical Background 7

Many of the most successful methods are context-based and use a contrastive loss.
In general terms these methods try to maximize the contrast between different images
while maximizing the similarity between an image and some augmentations of it, such
as rotations, filters, patches and other hand designed transformations. This leaves an
interesting opening to explore how video data can improve these methods. Therefore, we
want to explore this open question during the evaluation phase of the project.

2.1.3 Downstream Tasks

The survey [Jing e Tian 2020] gives the four most used downstream tasks for evaluating
visual features learned by self-supervision:

• Semantic Segmentation: Given an input image, classify each pixel with a semantic
label. The main datasets for semantic segmentation are: COCO [Lin et al. 2014],
PASCAL VOC [Everingham et al. 2010], Cityscapes [Cordts et al. 2016] and Cam-
Vid [Brostow et al. 2008].

• Object Detection: Localizing the position of objects in images and classifying each
localized object. One common way is to use bounding boxes to localize the desired
objects. Two important datasets are: COCO [Lin et al. 2014] and OpenImages
[Kuznetsova et al. 2020].

• Image Classification: Given an image, classify it. It is a classic Deep Learning task
and ImageNet [Deng et al. 2009] is one of the most traditional datasets.

• Human Action Recognition: Given a video, classify it with a class from a list of
actions. This commonly used as a downstream task for self-supervised learning on
videos.

The evaluation of self-supervised learning is often done in specific downstream tasks
and dataset, but, recently, diverse benchmarks were proposed with the goal of better
evaluating the learned representations. Two recent benchmarks are introduced in the
Related Work section.

2.2 Related Work

2.2.1 Evaluation of Self-Supervised Methods

The evaluation of the quality of learned visual representations has been the subject of a
few recent papers. The majority of previous works choose to evaluate it on a few standard
downstream tasks and use a simple transfer learning method. The two most common
methods are fine-tuning the entire model on the downstream task [Chen et al. 2020] or by

Capítulo 2. Theoretical Background 8

using a linear evaluation protocol [Zhang, Isola e Efros 2016] which consists in training, on
a downstream task, a linear model on top of the self-supervised learned model with frozen
weights. In other words, it trains a linear model that receives as input the representations
outputted by the self-supervised model. However, some works question if this approach is
appropriate.

One of the most important papers on this matter proposed the Visual Task Adaptation
Benchmark (VTAB) [Zhai et al. 2019]. Instead of using only one or a few downstream
tasks, VTAB uses 19 tasks that cover many important computer vision tasks. It is divided
into three sets of tasks: natural, specialized and structured. One key idea is that VTAB
aims to measure the representation quality by adapting it to diverse unseen tasks with few
examples. VTAB-1k forces sample efficiency by providing only 1,000 examples for each
task. The benchmark is not restricted to self-supervised methods and do not limit the
transfer learning techniques used, the methods must simply obey the restrictions of not
using the benchmark tasks or datasets for training and that hyperparameter search must
not be task-dependent, meaning that the same hyperparameter search is used for all tasks.

The paper used VTAB to compare many different approaches for self-supervised le-
arning, focusing on studying the self-supervised loss function. It showed that generative
methods performed worse than discriminative ones, with BigBiGAN [Donahue e Simonyan 2019]
being the only exception. In fact, they showed that generative methods performed worse
than training a supervised learning algorithm from scratch on kenda-1k. The best self-
supervised algorithms were: BigBiGAN, Rotation [Gidaris, Singh e Komodakis 2018] and
Exemplar [Dosovitskiy et al. 2014]. It also showed that Kendall’s correlation between
linear evaluation protocol and fine-tuning is very low on many tasks of VTAB, indicating
that fine-tuning, which yields better results, is a more appropriate evaluation.

Another important benchmark is the Facebook AI SSL challenge [Goyal et al. 2019].
Similarly to VTAB it use a diverse set of task, in this case 9. However, differently to
other benchmark, it limits the transfer learning part, as it believes to be a better way to
evaluate the learned representations. Another difference is that it does not turn every task
into a classification task.

The paper [Newell e Deng 2020] compares self-supervised algorithms by generating
synthetic data, which allows for generating different downstream tasks with varying
complexities. It offers very useful tools for evaluating methods. It also defines utility of
a self-supervision method as the ratio of additional labels used by a supervised method
to achieve the same performance of the fine-tuned self-supervised method. It showed,
once again, that the linear evaluation protocol is not a good indicative of fine-tuning
performance.

Capítulo 2. Theoretical Background 9

2.2.2 Using Static Images

Self-supervised algorithms for learning visual representations from static images have
been widely studied, here we focus on the state-of-the-art methods on self-supervised
image classification on ImageNet and VTAB.

The three best performing methods on ImageNet are based on constrastive loss, even
though. SimCLR (Simple Framework for Contrastive Learning of Visual Representations)
[Chen et al. 2020] is one of the main contrastive learning algorithmm and it’s second
version [Chen et al. 2020] is the current state-of-the-art in self-supervised learning for
ImageNet [Russakovsky et al. 2015]. The second is Bootstap Your Own Latent (BYOL)
[Grill et al. 2020] and the third is Swapping Assignments between multiple Views of the
same image (SwAV) [Caron et al. 2020].

In the VTAB paper, the authors showed that BigBiGAN [Donahue e Simonyan 2019]
was the best generative method in VTAB-1k, among the ones tested, and it is also
one of the best generative methods on ImageNet. The best generative approach on the
latter is iGPTL [Chen et al. 2020], it draws inspiration from language models and scales
computation and size to achieve good results.

2.2.3 Using Video Data

The literature on self-supervised learning from videos is extensive, but only a few
evaluate the learned representations on static image downstream tasks. Here we will
introduce recent papers that use video data and achieved very good performance.

[Purushwalkam e Gupta 2020] proposes a way to investigate the invariances learned
by contrastive self-supervised methods. It discovered that common data augmentation
techniques do not enforce important invariances when dealing with objects, such as
viewpoint and deformation invariance. It proposes using video data and an unsupervised
object tracker algorithm to produce better data augmentations. This work is an example
of directly using videos to improve image-based methods.

[Zhuang et al. 2020] presented Video Instance Embedding (VIE) based on static image
contrastive methods and compared it to other video-based methods, showing better
performance on ImageNet, UCF101 and HMDB51.

[Gordon et al. 2020] argues that videos provide data augmentation for free and proposes
Video Noise Contrastive Estimation (VINCE) for modifying contrastive methods to use
video data. It is a general method that can be integrated with state-of-the-art image-based
algorithms. It also built a new video dataset Random Related Video Views (R2V2) that
can be useful for comparing methods. This paper is a very good comparison for our work,
as it explicitly tries to use videos to improve static images approaches.

Sequence Contrastive Learning (SeCo) [Yao et al. 2020] reported better results than
VIE and VINCE. A problem is that SeCo and VIE were not compared to static image

Capítulo 2. Theoretical Background 10

methods and did not use a very diverse benchmark such as VTAB.
Other recent approaches, evaluated on different scenarios, are [Luo et al. 2020] and

[Qian et al. 2020].
Even though contrastive approaches dominate the self-supervision scene, generative

approaches are being actively researched. One approach to generative self-supervised lear-
ning from videos is video prediction. It consists in given a sequence of past frames we want
to predict a sequence of next frames. The review [Oprea et al. 2020] proposes a taxonomy
for Deep Learning techniques and datasets, laying a good foundation for understanding
the state-of-the-art in 2020. The metrics and datasets are diverse, but we will focus on
methods that perform well overall. Two remarkable methods are [Jin et al. 2020], which
is a stochastic approach that uses the Wavelet Transform, and CrevNet [Yu et al. 2019].

2.3 Contrastive Learning

2.3.1 Noise Contrastive Estimation (NCE)

According to the original paper [Gutmann e Hyvärinen 2010], NCE is an estimation
principle for parametrized statistical models. The original idea was to estimate the model
parameters by discriminating real observed data from generated noise using nonlinear
logistic regression. It was shown to be a convergent estimator of the parameters and to
directly work for unnormalized models. An unnormalized model is one that the density
function does not integrate to one. The normalization constant is usually very hard to
compute.

The paper formulates the estimation problem as trying to model an unknown probability
density function (pdf) pd(.), which is the data pdf. It models pd(.) using a parametrized
distribution pm(.; a) from a family of functions. It assumes that pd(.) belongs to this
family, and that pd(.) = pm(.; a∗). Therefore, the goal is to estimate the parameters
a from observed samples from the data by maximizing some objective function. It
imposes that pm(.; a) must integrate to one, which can also be fulfilled by redefining
pm(.; a) = p0

m(.; a)/Z(a), being Z(a) the normalization constant obtained from p0
m(.; a) and

data. Z(a) is usually intractable.
A way of dealing with Z(a) is to consider it as an additional parameter of the model.

This approach is not possible for Maximum Likelihood Estimation (MLE), as the likelihood
can be made as big as one wants by setting Z(a) closer to 0. As a result methods usually
use the unnormalized function.

The NCE paper proposes an estimator that allows to estimate both a and Z(a) from
the same objective function. It does so by learning to discriminate between data samples
and artificial noise. It presents a direct comparison to supervised learning to explain
the estimator: it discriminates between data and noise, in a supervised manner, and

Capítulo 2. Theoretical Background 11

learns properties of the data. It basically outputs if the input example is from the data
distribution or from noise. In practical terms it explicitly models the data distribution
using a parametrized model and use a loss function that allows to learn these parameters by
contrasting with noise. Therefore, in the end the result is a learned parametrized model of
the data distribution. The noise distribution must obey to some technical constraints but,
intuitively, it should be close to the data distribution in order to make the classification
problem difficult.

NCE is the main theoretical base of many contrastive algorithms as mentioned in
[Liu et al. 2020].

2.3.2 Simple Framework for Contrastive Learning of Visual Representations
(SimCLR)

SimCLR [Chen et al. 2020] is the current (October, 2020) state-of-the-art self-supervised
learning algorithm on the ImageNet dataset and illustrates the basic idea of a contrastive
learning approach. It proposes a simpler algorithm than previous contrastive learning ones
as it does not use memory banks or techniques such as clustering.

Among its major contributions, it showed that using a composition of data augmen-
tations is very important for the pretext task, a nonlinear transformation between the
learned representation and the pretext task output highly improves the representations
and that contrastive learning benefits from larger batch sizes and more training steps than
supervised learning. It was also found that representation learning with contrastive cross
entropy loss is improved by normalized embeddings and a tuned temperature parameter,
which are used in a loss function called Normalized Temperature-scaled Cross Entropy
Loss (NT-Xent).

The data augmentation method was to sequentially apply 3 simple augmentations:
random cropping, then resize to original size, random color distortions and Gaussian blur.
The authors conclude that random cropping combined with color distortion is much better
than the other augmentations tested.

ResNet was the neural network architecture chosen, but it can be easily replaced by
another model. It also uses a projection head, which is an one hidden layer Multilayer
Perceptron (MLP), between the learned representations and the contrastive output (the
embedding vector used to calculate the similarity), which was found to increase downstream
performance.

The loss function is defined as follows: A minibatch of N examples is randomly sampled,
data augmentation is applied generating another N data points, yielding 2 × N data
points separated in N pairs. Each pair contains a data point and its augmentation, which
is considered a positive pair. The negative examples for a data point are all the other
2× (N − 1) points in the batch. The loss function for a positive pair of examples (i, j) is

Capítulo 2. Theoretical Background 12

defined as:
li,j = −log exp(sim(zi,zj)/τ)∑2N

k=1 Ind(k 6=i)×exp(sim(zi,zk)/τ)
Where zi is the output of the neural network given example i as input, τ is a temperature

hyper-parameter, sim(x, y) is a similarity function, which in SimCLR is the cosine similarity,
and Ind(k 6= i) is a function that returns 1 if and only if k 6= i. Note that zj is in the
zk’s, which are the negative examples, even though zj is the positive example. The loss is
computed over all positive pairs (i, j) and (j, i). By using a big batch it does not require a
memory bank.

Training with a larger batch size may be unstable with SGD and Momentum, so the
paper used the LARS optimizer [You, Gitman e Ginsburg 2017]. Batch normalization was
also used with some modifications.

The evaluation protocol was to use the linear evaluation and fine tuning on ImageNet
using 1% and 10% of the labels.

2.3.3 Video Noise Contrastive Estimation (VINCE)

Video Noise Contrastive Estimation (VINCE) [Gordon et al. 2020] combines the idea
of obtaining data augmentation by using videos and the Noise Contrastive Estimation loss
(NCE). The basic principle is to maximize the similarity between an anchor data point
and positive ones, while minimizing the similarity between the anchor and negative data
points. VINCE obtains positive data points by using different frames from the same video,
providing multiple viewpoints from objects, deformations and other views that serve as a
more natural and complete data augmentation obtained from data.

VINCE tries to learn a semantic representation of the entire scene based on a single
frame, in hope that if the network can represent different images from the same video with
similar vectors, then the representation should encode information about the entire scene,
temporal and visual.

It proposes a new dataset Random Related Video Views (R2V2), which is obtained by
using ImageNet labels to guide a search on Youtube.

Multi-frame NCE is what the paper calls methods that use multiple frames from a
video as positive pairs, in contrast to single-frame approaches that use augmentation from
a static image.

VINCE is based on NCE learning, using the NCE loss and batch ideas. It states the
NCE methods are improved by using large sets of negative examples as it increases the
chance of finding a hard negative for a positive pair. These negatives can be sampled
from a memory bank containing earlier outputs of the network, which are from prior
batches. The NCE loss must be modified to accommodate this. Using outputs from prior
batches can be a problem because the network might learn to contrast between its older
outputs and the newer ones. MoCo [He et al. 2020] proposes modifications to alleviate
this problem.

Capítulo 2. Theoretical Background 13

Differently from MoCo and SimCLR, VINCE uses more than n positive pairs in a
batch of size n. It does so by using multiple frames from the same video, using all the
possible pairs. Using v videos and k samples for each one, it can achieve k2 × v positive
pairs. The paper says that it could use one video per batch and compute n2 positive pairs,
but this leads to instability and extreme gradients. It calls it Multi-pair.

VINCE uses Multi-Frame, Multi-pair and the MoCo memory bank. It also uses data
augmentation (crop, flip, color jitter). We could conclude that VINCE simply uses videos
on the choice of positive pairs, without explicitly using temporal cues.

It evaluates MoCo, a static image method, on a video dataset, by not using the same
frame technique and prevents from having multiple images from the same video for being
in the MoCo memory back at the same time. It shows that VINCE achieves better
performance than MoCo.

14

3 Contrastive Learning of Structured World
Models (C-SWMs)

3.1 Algorithm
Contrastive Learning of Structured World Models (C-SWMs) [Kipf, Pol e Welling 2019]

is an object centred approach that tries to understand the world in terms of objects, their
relations and hierarchies. It uses Graph Neural Networks [Zhou et al. 2018] to model
objects and relationships and to create state embeddings. The field of learning a structured
description of the world using objects has been dominated by generative approaches.
However, the most recent breakthroughs in self-supervised learning were, in general, made
by contrastive approaches, making C-SWMs a promising innovation to the field.

It operates in a reinforcement learning context and learns state abstractions. A state
abstraction is a latent representation of an environment state that encodes important
information to predict the next state abstraction after taking a certain action. It can be
thought of an encoder that transforms an observed state to a higher level representation
and a transition model that takes a state abstraction and an action and predicts the
abstraction of the next state.

It can be thought of as implementing the compelling idea of learning a model of the
world, but it does so by using a contrastive approach rather than using a generative one.
This brings the important notion of similarity and does not require to learn complex pixel
based relations.

It is not well defined what is an object centred approach, but it can be vaguely
understood as trying to create models with the prior knowledge that the world is composed
of objects. An object can be a ball, a hand, an arm or even an entire person. These
approaches usually try to capture the notion of compositionality. The idea becomes clearer
in the C-SWM algorithm.

C-SWM is based on the graph embedding method TransE [Bordes et al. 2013]. Figure
1 shows a high level view of the model’s architecture. The input which is an observation,
which could be an image, is passed to an object extractor model that outputs object masks,
which serve as input to an object encoder that outputs a set of vectors called abstract
state descriptions (ASD). Each ASD is said to capture information from a single object of
the scene, which is enforced, but not guaranteed, by the loss function and architecture.
This set of vectors are said to describe the state of the world at that time step.

To each ASD, an action is associated. In the paper, the same action is copied to all
the ASDs and is the action taken by agent in that state. However, this could be used to
model actions taken by other agents in the environment. As another display of flexibility,

Capítulo 3. Contrastive Learning of Structured World Models (C-SWMs) 15

Figura 1 – C-SWMs model. Taken from the original paper [Kipf, Pol e Welling 2019]

C-SWMs can be easily adapted to a video scenario rather than a reinforcement learning
one, by ignoring the actions.

The ASDs and actions are passed through a Graph Neural Network, that could model
complex relations between objects, and are used to predicted the next set of ASD’s.
C-SWM is said to learn a structured world model because it represents the world using a
structure of objects and use it to predict the next state. One could see this as predicting
the future at a higher abstraction level in which useless features such as details in the
background can be ignored. Conceptually, this should be a big advantage of C-SWM
against pixel based generative approaches. This idea of higher level prediction has also
been tried in the paper [Oord, Li e Vinyals 2018].

The contrastive part of the name comes from the fact that it uses a contrastive loss to
enforce that the predicted state representation is similar to the actual state representation
of the next step. Therefore, the self-supervision comes from the next frame of a video,
or, more generally, from the next observation. However, the algorithm uses an energy-
based hinge loss [LeCun et al. 2006], differently from the recent success in self-supervised
learning.

3.2 Evaluation Metrics
The authors chose to not use downstream task performance as an evaluation metric.

Rather, it used metrics that directly measure the quality of the predictions made by the
model, more specifically, it uses raking metrics.

The ranking metrics used in the paper are: Hits at Rank 1 (H@1) and Mean Reciprocal
Rank (MRR). The metrics are applied in the following context: given an observation and
an action, the model predicts the representation Rpreds+1,a of the next state s+1 achieved
by taking the action a. The algorithm keeps an experience buffer containing a set of
different state representations. Then the model sees the true observation of the next state
by taking action a in the environment and computes the true state representation Rs+1,a.
The distances between Rs+1,a and the other state representations are computed, computing
a rank of the representations according to the distance to the true state representation.

Capítulo 3. Contrastive Learning of Structured World Models (C-SWMs) 16

The lower the rank, the closer it is to the true representation.
The paper also uses an extension in which the prediction is done after k steps and

actions, evaluating a longer scale prediction, up to 10 steps. The model is only trained to
predict one step ahead, then predicting k steps ahead is done in an auto-regressive way.
The model predicts the next state and uses it as input to predict the next one.

Hits at Rank k (H@k): It is a binary score equal to 1 if the rank of Rpreds+1,a is lower
or equal to k, and 0 otherwise. Therefore, H@1 is 1 if and only if Rpreds+1,a is the closest
state to Rs+1,a. The results are averaged over the evaluation dataset. The higher the H@k,
the better.

Mean Reciprocal Rank (MRR): It is a more relaxed metric than H@k as it is non
binary. MRR = 1

N

∑N
n=1

1
rankn

, where rankn is the rank of Rpreds+1,a in the nth example.
The higher the MRR, the better.

3.3 Why C-SWM ?
C-SWM is a very interesting algorithm that combines two very promising approaches:

contrastive learning and object based. It can be easily applied to videos, images and
reinforcement learning. Its architecture can be modified to inject prior knowledge that
could make learning more efficient, such as a special object extractor or transition model.
The contrastive loss can be modified to take advantage of objects, which presents an
interesting path for using not only entire images, but also specific objects to use as positive
and negative examples for a contrastive loss. However, it is not clear if it is a competitive
self-supervised learning algorithm and it has several shortcomings. Therefore, this work
aims to follow the steps of C-SWM by proposing modifications and better evaluating it.

3.4 Slot Contrastive Networks (SCN)
A follow up to the C-SWM was the SCN [Racah e Chandar 2020]. It is another

contrastive and object based approach very similar to C-SWM, but uses a different loss
function and architecture.

The authors state that generative models have trouble dealing with small objects (as
has been shown by previous works [Anand et al. 2019]) and waste capacity on modelling
useless background pixels. In this scenario two self-supervised techniques have gained
attention: contrastive learning and pretext tasks. It, other video based approaches,
states that static images do not leverage important information such as movement and
deformations. It aims to learn an object-centered representation, that instead of using a
single embedding vector uses a set of vectors of separate entities. These vectors are called
slot vectors.

Capítulo 3. Contrastive Learning of Structured World Models (C-SWMs) 17

Similarly to C-SWMs the proposed architecture uses a Convolutional Neural Network
(CNN) to map the input frame to K sets of feature maps, called slot maps. It uses a
convolutional layer followed by a MLP with shared weights to map each slot map to a
slot vector, whereas C-SWMs use a more complicated graph neural network with an MLP
object encoder. The two approaches are also different in terms of the loss function and
training.

The paper divides the loss function into two parts: slot saliency and slot diversity.
Slot saliency: How to enforce that each slot vector captures a single object? One main

idea of the paper is the assumption that objects and other important parts change in time,
whereas the background usually does not. Therefore, it tries to ensure that the slot vector
captures time dependent features, in hope that objects are dependent on time. It uses as
positive pairs the same slot at two consecutive time steps and negative pairs the same
slot at random, hopefully non consecutive, time steps. Note that this approach is very
different from VINCE, which does not care about time and uses frames from the same
video as always similar. However, here we are talking about slot vectors, so it wants the
slot to capture a certain object. It tries to capture temporal differences between states.
This is similar to the loss function of C-SWMs, as it uses a randomly chosen slot vector
from the same slot as negative and the slot vector of the next frame of this slot is chosen
as the positive.

Slot diversity: It wants to encourage diversity between slots so it tries to contrast
between different slot representations in consecutive time steps. The same slot in conse-
cutive time steps is chosen as a positive pair, whereas different slots in consecutive time
steps are chosen as the negative examples.

It aims to directly measure slot representation quality. One way is slot compactness,
which uses linear probing to output the coordinates of some objects in the scene, by using
linear regression with the input being the concatenated vectors. Apart from this it uses
slot modularity and slot accuracy.

In the discussion section the authors make an interesting claim about C-SWMs, which
is that it is better at identifying predictable objects, whereas SCN is trained to find any
object that moves. Another claim is that the slot diversity loss in SCN does little to
actually increase slot diversity, as it does not change much compactness or modularity.

This paper is important for this work as it uses different metrics based on slots and
shows an approach to use slot level contrastion. The methods used in this work are very
different from the ones used in SCN, especially in terms on the evaluation metrics.

18

4 Problems and Goals

4.1 C-SWMs Evaluation
C-SWM cannot be proclaimed as a successful self-supervised learning algorithm because

it has not been evaluated in challenging datasets, against strong algorithms or on common
metrics.

The paper used “toy datasets” such as simple 3D and 2D shapes and Atari games
(Space Invaders and Pong), which are good for an initial proposal but cannot guarantee
that it will perform well on real world complex applications.

It was evaluated against generative approaches, leaving many doubts about how it will
perform against the more recent contrastive approaches.

Furthermore, it is not clear if good performance on the ranking metrics used corresponds
to good performance on downstream tasks. In the context of representation learning,
a representation is useful if it facilitates a certain task. As a result, downstream task
performance is very important to evaluate the quality of the representations. Arguably, it
is the ultimate test for a self-supervised learning algorithm for a specific task. Another
problem with the metrics used is that no other important recent algorithm has used them,
making it impossible to compare.

4.2 C-SWMs Shortcomings
The C-SWM paper lists some limitations of the algorithm. Firstly, it shows that

the results can vary with the hyper-parameter that defines the number of objects and
concludes that it has trouble dealing with a varying number of objects. A related
limitation is that as it uses a simple CNN architecture to extract objects, it will not be
able to disambiguate multiple appearances of the same object in the input image. In the
literature there are approaches that deal with these problems and could be integrated
in the C-SWM architecture, such as MONet [Burgess et al. 2019] and Slot Attention
[Locatello et al. 2020].

Another limitation is that it does not model stochasticity, which is essential for complex
data such as natural images. A probabilistic modification to the algorithm seems to be
a very important step and it may be able to draw inspiration from the video prediction
literature, in which there are several works [Oprea et al. 2020] that deal with this problem.
Lastly, the transition model is based on the Markov assumption, which may limit how
well it can predict and represent states.

Capítulo 4. Problems and Goals 19

Another possible shortcoming is that it does not use data augmentation or the contras-
tive loss functions that enabled recent success in self-supervised learning.

4.3 POC 1 Goals
The goal of the first part of this work, developed as POC 1, is to tackle some of C-SWM

problems. More specifically we focus on the following goals:

• Evaluate C-SWM on a classification downstream task.

• Compare how different evaluation metrics, including ranking metrics, correspond to
downstream performance.

• Replace the hinge based energy loss by the SimCLR loss (NT-Xent).

• Evaluate how SimCLR data augmentation affects performance.

• Integrate Slot Attention to the object encoder.

This part does not aim to validate C-SWM as a competitive algorithm. It aims to
propose a better evaluation protocol and to use it to evaluate modifications that include
successful ideas from recent self-supervised learning literature.

The POC 2 part will be shown in the Future Work section.

20

5 Methodology

5.1 Evaluation
Following VTAB [Zhai et al. 2019], we chose downstream task performance after fine-

tuning as the main metric, as it provides a realistic scenario of transfer learning. The
goal of this work is to use self-supervised learning to improve computer vision tasks and
transfer learning was chosen as the way of using the learned parameters to make learning
a downstream task more efficient in terms of data and training time. Therefore, improving
fine tuning performance is the end goal of this work.

Following SimCLR [Chen et al. 2020], we use only 10% of the downstream task dataset
for fine-tuning, as it presents a more challenging scenario in which the self-supervised
pretraining is essential to efficiently achieve good performance on the task.

The fine tuning evaluation protocol is to train the model on a video dataset (pretext
task) and then use the learned parameters as initialization for training on 10% of a static
image dataset (downstream task), and then evaluate its performance on the full static
image test set. The downstream model uses a different last layer suitable for the task,
such as a one layer softmax. Both these phases require hyper-parameter tuning and we
chose to use the same optimizer hyper-parameters for all evaluated models, but note that
the hyper-parameters in pretraining and fine tuning may differ.

It is part of the transfer learning evaluation method to choose which part of the model
will be used for fine tuning. Here we chose to use two options: the full model including the
transition model or only the part that computes the state description (object extractor
and object encoder).

We also used the linear evaluation protocol mentioned in the theoretical background,
which consists in using the learned model as a feature extractor, in the sense that
its parameters are not modified during this step. In other words its parameters are
frozen. The model is applied on all the downstream training dataset examples and
computes a representation for each one, generating a new dataset composed by the learned
representations and the original labels. Using this new dataset, a linear classifier is trained
on it and evaluated on the test set transformed by the same process. In this work we chose
to use Support Vector Machine linear classifier trained using stochastic gradient descent.

We use the ranking metrics implemented in the original C-SWM implementation on
Github. 1

1 https://github.com/tkipf/c-swm.

https://github.com/tkipf/c-swm

Capítulo 5. Methodology 21

5.2 Datasets
In this work, due to computational resources and limited time, we chose to keep using

“toy datasets” to train and evaluate the models. As a first step to propose and validate
modifications to the original algorithm, a smaller and simpler dataset may be sufficient.

Here we use the Atari datasets (Space Invaders and Pong) from the C-SWM paper
and modifications of the classic MNIST dataset [LeCun, Cortes e Burges 2010].

5.2.1 MNIST

We use the Moving MNIST [Srivastava, Mansimov e Salakhudinov 2015] 2, which is
composed by videos of 20 frames showing 2 digits taken from the MNIST dataset bouncing
on the image edges in a deterministic fashion. The frames are in grey scale and are 64× 64
pixels. We use 60% of the Moving MNIST videos as training and use the other 40% as
testing data to compute the ranking metrics. In self-supervised learning terms, we use
Moving MNIST for the pretext task.

To use digit classification on MNIST as a downstream task it is necessary to modify
the images dimensions because the original dataset dimensions are 28× 28 pixels, whereas
the model was trained to accept 64× 64. To cope with this, we modify the original images
by padding the images with more background pixels, in a way that the position of the
digit in the image is random, uniformly distributed.

2 http://www.cs.toronto.edu/~nitish/unsupervised_video/

http://www.cs.toronto.edu/~nitish/unsupervised_video/

22

6 Experiments and Results

6.1 Implementation
The implementation of the algorithms and experiments can be found in the following

Github repository 1.

6.2 Re-evaluation on Atari Environments
The goal of this section is to point out inconsistencies in the evaluation method and

datasets used in the C-SWM paper.
The original paper reported poor results and high variance on the Atari Environments.

The original paper only evaluated it using four repetitions. We tried to repeat the results
by using the same hyper-parameters and the original implementation. We evaluated using
6 repetitions, looking only one step after and using 3 object slots. The results are shown
in table 1.

Our results were very different from the original ones, even though we used the same
implementation, which may be explained by the randomness in generating the dataset
and training. A more complicated issue arose when we trained the model ignoring the
actions. The actions were supposed to be a helpful source of information, but ignoring
them ended up improving the results. This result may invalidate the way the Space
Invaders environment was used in the original paper.

Tabela 1 – Space Invaders environment results for 3 object slots and 1 step

Metrics Original Results Our Results Our Results ignoring actions
Hits @ 1 46.2 ± 13.0 64.7 ± 6.5 84.6 ± 9.2
MRR 62.3 ± 11.5 78.8 ± 4.8 89.0 ± 7.3

We followed the same procedure in the Pong environment and found results similar to
the original paper, except that we used more repetitions (6 instead of 4) and found higher
variance. The results are shown in table 2.

Tabela 2 – Pong environment results for 3 object slots and 1 step

Metrics Original Results Our Results
Hits @ 1 36.5 ± 5.6 30.8 ± 11.9
MRR 56.2 ± 6.2 51.7 ± 9.5

1 https://github.com/gabrielsluz/c-swm

https://github.com/gabrielsluz/c-swm

Capítulo 6. Experiments and Results 23

Such poor results in “toy datasets” could indicate that these datasets could be used to
evaluate modifications to the original algorithm. However, due to the ignore action results
on Space Invaders, we considered that it was reasonable to use another dataset.

6.3 Moving MNIST Evaluation
A hyper-parameter search for neural network models can be extremely costly. As a

result, we chose to use the original paper hyper-parameters except for the ones bellow,
which were considered the most important and specific to an application.

• Number of objects

• Dimension of the abstract state description, referred as embedding dimension

• Object extractor model, referred as encoder

• Number of epochs

These parameters directly influence the object based implementation. We used the
original object extractor models which are three simple CNN architectures. The one called
small is a one layer CNN that we did not use as it is too simple. We evaluated the medium
and large options. In both options, after each layer, it is applied Batch Normalization
[Ioffe e Szegedy 2015] and the activation function used in the last layer is the Sigmoid.

The medium architecture is a two layer CNN with 9×9 filters in the first layer, and
5×5 filters with a stride of 5 in the second layer. The activation function used was the
LeakyReLU [Xu et al. 2015].

The large architecture is a four layer CNN with 3×3 filter and 16 feature maps per
layer, except on the last layer which uses one feature map per object slot. The activation
function used is the ReLU (Rectified Linear Unit).

6.4 Encoder and Hidden Dimension
The dimension of the abstract state description (embedding dimension) defines the

size of the vector that represents a single object. As a result, a state representation that
uses 10 object slots and an embedding dimension of 10, is a matrix of dimension 10× 10.
As a result, a question arises: Is it better to use a higher embedding dimension or more
object slots ?

A simple experiment, using the ranking metrics, was used to try to answer this question.
At first the embedding dimension was fixed to 10 and the number of objects was varied.
Then the opposite was done. It was repeated 4 times for 50 epochs each. The results are
shown in figure 2. Firstly, the results show that the hyper-parameters used were able to

Capítulo 6. Experiments and Results 24

achieve very good performance in the Hits @ 1 ranking metric. Furthermore, it shows that
increasing the number of objects in this small scenario was much better than increasing
the size of the hidden dimension, even though it had higher variance and lower mean on
the middle value.

Figura 2 – Comparison of the impact of the number of objects and embedding dimension

In order to choose between the medium or larger encoder, an experiment was performed
using 10 objects with a embedding dimension of 10, varying only the encoder. It was
repeated 4 times for 50 epochs each. The results in table 3 show that the large encoder
was considerably better. Therefore, we use the large encoder for all the next experiments.

Tabela 3 – Results for different encoders

Encoder H@1
Large 0.982 +- 0.005
Medium 0.950 +- 0.004

6.5 Number of Objects
The goal of this section is to evaluate how the number of object slots impacts fine

tuning performance and to check how the evaluation metrics are correlated. Here we
evaluated both the model with and without the transition model in the transfer learning
step. In this section the expression “number of objects” refers to the number of objects the
model is prepared to identify, in other words, it refers to the value of the hyper-parameter
that determine how many object slots will be used.

The important hyper-parameters used were:

• Number of objects: 2, 5, 10, 15, 20, 25

Capítulo 6. Experiments and Results 25

• Embedding dimension: 10

• Encoder: Large

• Number of epochs: 10

• Experiment repetitions: 4

The experiments were conducted by training the model using self-supervision on
the Moving MNIST dataset for 10 epochs and then the trained was evaluated using
the evaluation metrics. The experiment was repeated 4 times for each unique set of
hyper-parameters.

The fine-tuning was done using the padded MNIST dataset, divided into training and
test sets, using the same division of the original MNIST. The model was fine-tuned for
30 and 60 epochs and then its accuracy on the test set was measured. The fine-tuning
process was done for the model with and without the transition model.

By transfer learning we refer to the fine-tuning and linear evaluation methods. The
results for these metrics are shown in figure 3. Firstly, there is a positive relation between
the number of objects considered and fine-tuning performance. The more objects, the
better the performance. One possible interpretation is that by using more objects slots,
we are also using a larger model, which increases performance. This matter will be further
evaluated on the section "Number of objects versus Embedding dimension". Secondly, the
fine-tuning performance was much greater than the linear performance, indicating that in
a practical scenario the former would be preferred.

This results contrast with the original paper decision to use a small number of object
slots.

Figura 3 – Transfer Learning evaluation for varying number of objects

In order to compare if the transition model is beneficial during fine-tuning time, we
compare the model with and without it in figure 4. The model without the transition

Capítulo 6. Experiments and Results 26

model was better, which is good as the model without is more efficient to fine-tune and to
make inferences.

Figura 4 – Comparison of the best models with and without the Transition Model

We also evaluated using the ranking metrics in figure 5. The H@1 and MRR for 1 step
prediction show near perfect results, but for 10 steps it gets much worse. The H@1 and
MRR metrics show very similar trends.

Figura 5 – Ranking metrics evaluation for varying number of objects

In order to evaluate how different metrics correspond to a better fine-tuning performance,
we calculated the Pearson’s correlation coefficients for all metrics in respect to fine-tuning
for 60 epochs in the without transition model scenario. It evaluates how two random
variables are linearly correlated, ranging from −1 to 1. A value of −1 indicates that there
is total linear negative correlation, whereas a value of 1 indicates that there is total positive
correlation. Therefore, the most correlated metric will be the one with the highest value.

Table 4 shows the results associated with the number of objects hyper-parameter. It
shows that all the metrics are well correlated with the true metric. One possible conclusion

Capítulo 6. Experiments and Results 27

is that, in respect to the number of objects, the H@1 and MRR may offer a very good
approximation to the true metric. An explanation for this is that increasing the number
of objects leads to better results in all metrics. However, a parameter such as the number
of epochs may have very different results, as it may lead to over specialization in the
self-supervision task, increasing performance on the ranking metrics, but decreasing in the
downstream tasks.

Tabela 4 – Sorted Pearson’s correlation coefficients for the evaluation metrics in respect
to Fine Tuning for 60 epochs on the model without the transition model

Evaluation Metric Pearson’s coefficient
Fine Tuning - 60 epochs 1.000
MRR - 1 step 0.993
H@1 - 1 step 0.992
MRR - 5 steps 0.987
Fine Tuning - 30 epochs 0.985
H1 - 5 steps 0.977
MRR - 10 steps 0.937
Linear Evaluation 0.913
H1 - 10 steps 0.906

6.6 Number of epochs
The goals of this section are to evaluate how the models performance varies with the

number of training epochs and to evaluate how the metrics are correlated in respect to
this hyper-parameter.

Due to computational constraints we chose to use a number of objects equal to 15
and not 20, to evaluate the number of epochs. The other hyper-parameters and the
experimental protocol were the same as the number of objects experiments.

Figure 6 displays the results for the transfer learning metrics. It shows very similar
results to the number of objects experiments. All the metrics achieve a steady performance
with few epochs and do not display signs of overfitting.

Figure 7 shows that the variations with and without the transition model have very
similar results, but this time the with variation achieved better performance. In comparison
to the number of objects experiments, we can note that increasing the number of epochs
from 10 to 20 was not enough to surpass the model that used 20 object slots, instead of 15.

The results for the ranking metrics, shown in figure 8, were very similar as well.
Training the model for more epochs allowed to increase these metrics at a steady pace,
but the results remained low. It was expected that the model would be able to achieve a
good 5 step prediction on the Moving MNIST dataset, but it did not occur. The reason
for this should be further explored, as it shows that the model could not learn a, possibly,

Capítulo 6. Experiments and Results 28

Figura 6 – Transfer Learning evaluation for varying number of epochs

Figura 7 – Comparison of the best models with and without the Transition Model

easy temporal prediction task. C-SWM only uses the next frame as a temporal cue, a
modification that uses different time scales may perform better. This matter may be
deeply related with the Markov assumption shortcoming, as the model assumes that the
current state contains all the information to predict the next state, which may not hold
for longer term predictions.

The Pearson’s correlation coefficient between all the metrics and fine-tuning accuracy
after 60 epochs was calculated, and are shown in table 5. In comparison to the number of
objects experiments, the correlation coefficients were much lower. It can be seen that the
linear evaluation protocol is almost not linearly correlated with fine-tuning performance,
indicating, once again [Zhai et al. 2019], that it is not a good evaluation metric for self-
supervised learning algorithms. The metrics H@1 and MRR for 1 step prediction achieved
a stable high value, similarly to fine tune performance. The harder metrics (prediction at
5 and 10 steps) achieved a much lower correlation value. Therefore, some of the ranking
metrics are not good approximations of downstream task performance.

Capítulo 6. Experiments and Results 29

Figura 8 – Ranking metrics evaluation for varying number of epochs

Tabela 5 – Sorted Pearson’s correlation coefficients for the evaluation metrics in respect
to Fine Tuning with transition model for 60 epochs

Evaluation Metric Pearson’s coefficient
Fine Tuning - 60 epochs 1.000
Fine Tuning - 30 epochs 0.778
H@1 - 1 step 0.660
MRR - 1 step 0.655
MRR - 5 steps 0.281
H1 - 5 steps 0.156
Linear Evaluation 0.129
MRR - 10 steps -0.100
H1 - 10 steps -0.180

6.7 NT-Xent Loss Function
The first modification to the original algorithm was to use the NT-Xent loss, used in

SimCLR. It was adapted to the C-SWM model by using the pair predicted next state
and real next state as positive pairs, whereas all the other images in the mini-batch are
considered negative examples. The negative examples may include frames from other
videos or any other frame from the same video except the current and next observation.

This time the experiments were done using a different methodology. We only evaluated
fine-tuning performance, as it is the desired metric, and we did not fine-tune for a certain
amount of epochs and then test the models accuracy on the test set. Instead, we chose
to fine-tune for 60 epochs and test the accuracy every 5 fine-tuning epochs. The best
accuracy result is returned as the fine-tuning test accuracy. The idea is that choosing a
fixed number of epochs, such as 30 or 60, would not be used in practice as it is possible to
get a better result by choosing the model that achieves the best validation error during
fine-tuning.

The NT-Xent loss has a temperature hyper-parameter, following SimCLR, we evaluate

Capítulo 6. Experiments and Results 30

the temperature on two promising values: 0.1 and 0.5 . The results shown in figure 9
indicate that using the transition model during fine-tuning is considerably better. This
result is different from SimCLR, as the MLP head is used for the self-supervision part,
but taken out in the transfer learning part. Here we kept the transition model, analogous
to the MLP head, achieving better results than fine-tuning without it.

Figura 9 – Fine Tuning evaluation for NT-Xent loss

Figure 10 shows the results for the original C-SWM loss function, which was re-
evaluated using the new fine-tuning protocol. The results are very similar to the ones
found in the number of epochs experiments, but with the different evaluation protocol,
the results were slightly better, achieving an accuracy higher than 0.9 .

Figura 10 – Fine Tuning evaluation for the original loss

The main result of this section is shown in figure 11. The models trained using the
NT-Xent loss were considerably better than the model trained with the energy based hinge
loss. The results for the new loss were stabler and displayed lower variance.

Capítulo 6. Experiments and Results 31

Figura 11 – Fine Tuning evaluation comparing NT-Xent loss with the original loss

6.8 Data Augmentation
For these experiments we used the entire Moving MNIST dataset to train the model,

as the validation part was only used for the ranking metrics.
We used almost the same data augmentation composition as SimCLR, which showed

that randomly cropping, resizing and then applying random color distortion greatly
improved the quality of the learned representations. We used these transformations to
augment every image on a mini-batch. For the random cropping we chose a crop size of 50
pixels, as the images of the dataset are largely composed of black pixels, and using smaller
crop sizes could result in fully black crops.

Figure 12 shows the results for the model with and without data augmentation trained
on the entire Moving MNIST dataset. The results were greatly improved and, the model
trained with data augmentation benefited more from more epochs than the previous ones.

One very important result, shown in table 6, is that the model trained with the
NT-Xent loss function and data augmentation achieves a higher fine tuning performance,
but a lower ranking metric performance, in comparison to the original C-SWM loss. This
shows that for different losses the ranking metrics are not a good indicator of downstream
task performance.

Tabela 6 – Comparison between the loss functions in different metrics. Both models were
trained for 20 epochs.

Metric NT-Xent loss Hinge energy based loss
H@1 0.689 0.980
MRR 0.727 0.987
Fine Tuning accuracy 0.954 0.895

Capítulo 6. Experiments and Results 32

Figura 12 – Fine Tuning evaluation comparing the impact of data augmentation on the
best model so far.

6.9 Slot Attention
The Slot Attention [Locatello et al. 2020] is a neural network module based on an

attention mechanism that receives perceptual representations, such as features maps
outputted from a CNN, and outputs a set of vectors, called slots. The reason to consider
using Slot Attention is that it is a specialized object extractor, which achieved better
results than other strong approaches, such as MONet [Burgess et al. 2019] and IODINE
[Greff et al. 2019]. Furthermore, it is an iterative object encoder, which was recommended
in the original paper as an alternative to increase robustness to a varying numbers of
objects.

The Slot Attention module fits with the C-SWMmodel, as it has an object extractor that
outputs feature maps and an MLP encoder that outputs a set of vectors. A straightforward
modification is to replace the MLP encoder for a Slot Attention module. The results for
this modification are shown in figure 13. We did not use hyper-parameter search and
used 3 attention iterations as in the original paper. The results were much worse than the
model with the MLP encoder. We also tried a modification in which the Slot Attention
received the outputs of the MLP encoder, but the results were even worse, achieving no
more than 0.2 accuracy. Two possible reasons for the failure is that the object extractor
only outputs one feature map per object slot and we did not use positional embeddings.

6.10 Number of objects versus Embedding dimension
The goal of this section is to go back to the question: Is it better to use a higher

embedding dimension or more object slots ? But now with better hyper-parameters and
metrics to evaluate it.

Capítulo 6. Experiments and Results 33

Figura 13 – Comparison between the best model and the modification with Slot Attention
replacing the MLP encoder

Figure 14 shows the results comparing how different combinations of number of vectors
and vector dimension impact fine-tuning accuracy. The red lines show the results for a
higher number of object slots and the blue ones for a higher embedding dimension. The
plot on the left shows the results for closer values, whereas the one on the right show for
more distant ones. A larger number of object slots was more beneficial. One reason may
be that the transition model will have more nodes and, as a result, more capacity. Another
reason may be that by recognizing simpler objects the model may learn to recognize
small parts that are useful for several examples, whereas a more complex object may be
restricted to few examples.

Figura 14 – Comparison between using more object slots and using a higher object slot
dimension.

34

7 Conclusion

7.1 Main Results
In respect to the evaluation metrics, the linear protocol was shown again to be unrealistic

and to have low correlation with downstream task performance. The ranking metrics used
in the original paper were shown to not always be a good approximation to downstream
task performance, especially when evaluating different loss functions. However, the ranking
metrics at 5 and 10 steps were shown to be challenging to the current algorithm on a
simple dataset, which may indicate that by focusing on improving them, the quality of
the learned representations could also improve.

The NT-Xent loss function and data augmentation modifications were successful in
improving the models performance and showed that recent developments in self-supervised
learning can be applied to C-SWM.

The results showed that using more object slots with less dimensions is better than
using fewer slots with more dimensions.

7.2 Future Work
In order to do proclaim C-SWM as a competitive self-supervised learning algorithm,

we propose to evaluate it against strong algorithms in complex real world computer vision
tasks. One interesting question is if there are tasks that are better suited for object based
approaches. One possible answer may be the Clevrer dataset [Yi et al. 2019], in which
the algorithm is asked to reason about object’s interactions. A task in which object based
may have advantages will be preferred.

Another possible future work is to develop ways to use constrative learning at the level of
objects, similarly to what was done in Slot Contrastive Networks [Racah e Chandar 2020].
In this context, downstream performance may not be the best metric to evaluate new
methods, as it does not allow to directly evaluate the learned representations in terms of
objects. However, the end goal is to use contrast at object level to improve downstream
performance.

The shortcomings of C-SWM mentioned in the original paper are still open problems.
In respect to the Markov assumption limitation, a possible solution may be to use more
than one state to base the predictions for the next one and to use ranking metrics at 5 and
10 steps to evaluate it. One possible source of inspiration is the video prediction literature,
as the problem is very similar and there are attempts to deal with stochasticity and the
Markov assumption [Oprea et al. 2020].

35

Referências

[Anand et al. 2019]ANAND, A. et al. Unsupervised state representation learning in atari.
In: Advances in Neural Information Processing Systems. [S.l.: s.n.], 2019. p. 8769–8782.

[Bengio, Courville e Vincent 2013]BENGIO, Y.; COURVILLE, A.; VINCENT, P. Repre-
sentation learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence, IEEE, v. 35, n. 8, p. 1798–1828, 2013.

[Bordes et al. 2013]BORDES, A. et al. Translating embeddings for modeling multi-
relational data. In: Advances in neural information processing systems. [S.l.: s.n.],
2013. p. 2787–2795.

[Brostow et al. 2008]BROSTOW, G. J. et al. Segmentation and recognition using structure
from motion point clouds. In: ECCV (1). [S.l.: s.n.], 2008. p. 44–57.

[Burgess et al. 2019]BURGESS, C. P. et al. Monet: Unsupervised scene decomposition
and representation. arXiv preprint arXiv:1901.11390, 2019.

[Caron et al. 2020]CARON, M. et al. Unsupervised learning of visual features by contras-
ting cluster assignments. arXiv preprint arXiv:2006.09882, 2020.

[Chen et al. 2020]CHEN, M. et al. Generative pretraining from pixels. In: Proceedings of
the 37th International Conference on Machine Learning. [S.l.: s.n.], 2020.

[Chen et al. 2020]CHEN, T. et al. A simple framework for contrastive learning of visual
representations. arXiv preprint arXiv:2002.05709, 2020.

[Chen et al. 2020]CHEN, T. et al. Big self-supervised models are strong semi-supervised
learners. arXiv preprint arXiv:2006.10029, 2020.

[Cordts et al. 2016]CORDTS, M. et al. The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2016. p. 3213–3223.

[Deng et al. 2009]DENG, J. et al. Imagenet: A large-scale hierarchical image database. In:
IEEE. 2009 IEEE conference on computer vision and pattern recognition. [S.l.], 2009. p.
248–255.

[Donahue e Simonyan 2019]DONAHUE, J.; SIMONYAN, K. Large scale adversarial re-
presentation learning. In: Advances in Neural Information Processing Systems. [S.l.: s.n.],
2019. p. 10542–10552.

Referências 36

[Dosovitskiy et al. 2014]DOSOVITSKIY, A. et al. Discriminative unsupervised feature le-
arning with convolutional neural networks. In: Advances in neural information processing
systems. [S.l.: s.n.], 2014. p. 766–774.

[Everingham et al. 2010]EVERINGHAM, M. et al. The pascal visual object classes (voc)
challenge. International journal of computer vision, Springer, v. 88, n. 2, p. 303–338,
2010.

[Gidaris, Singh e Komodakis 2018]GIDARIS, S.; SINGH, P.; KOMODAKIS, N. Unsu-
pervised representation learning by predicting image rotations. arXiv preprint ar-
Xiv:1803.07728, 2018.

[Gordon et al. 2020]GORDON, D. et al. Watching the world go by: Representation learning
from unlabeled videos. arXiv preprint arXiv:2003.07990, 2020.

[Goyal et al. 2019]GOYAL, P. et al. Scaling and benchmarking self-supervised visual repre-
sentation learning. In: Proceedings of the IEEE International Conference on Computer
Vision. [S.l.: s.n.], 2019. p. 6391–6400.

[Greff et al. 2019]GREFF, K. et al. Multi-object representation learning with iterative
variational inference. arXiv preprint arXiv:1903.00450, 2019.

[Grill et al. 2020]GRILL, J.-B. et al. Bootstrap your own latent: A new approach to
self-supervised learning. arXiv preprint arXiv:2006.07733, 2020.

[Gutmann e Hyvärinen 2010]GUTMANN, M.; HYVÄRINEN, A. Noise-contrastive esti-
mation: A new estimation principle for unnormalized statistical models. In: Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics. [S.l.:
s.n.], 2010. p. 297–304.

[He et al. 2020]HE, K. et al. Momentum contrast for unsupervised visual representation
learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2020. p. 9729–9738.

[He et al. 2016]HE, K. et al. Deep residual learning for image recognition. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p.
770–778.

[Ioffe e Szegedy 2015]IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

[Jin et al. 2020]JIN, B. et al. Exploring spatial-temporal multi-frequency analysis for high-
fidelity and temporal-consistency video prediction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2020. p. 4554–4563.

Referências 37

[Jing e Tian 2020]JING, L.; TIAN, Y. Self-supervised visual feature learning with deep neu-
ral networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
IEEE, 2020.

[Kipf, Pol e Welling 2019]KIPF, T.; POL, E. van der; WELLING, M. Contrastive learning
of structured world models. arXiv preprint arXiv:1911.12247, 2019.

[Kuznetsova et al. 2020]KUZNETSOVA, A. et al. The open images dataset v4. In-
ternational Journal of Computer Vision, Springer Science and Business Media
LLC, v. 128, n. 7, p. 1956–1981, Mar 2020. ISSN 1573-1405. Disponível em:
<http://dx.doi.org/10.1007/s11263-020-01316-z>.

[LeCun et al. 2006]LECUN, Y. et al. A tutorial on energy-based learning. Predicting
structured data, v. 1, n. 0, 2006.

[LeCun, Cortes e Burges 2010]LECUN, Y.; CORTES, C.; BURGES, C. Mnist handwritten
digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, v. 2,
2010.

[Lin et al. 2014]LIN, T.-Y. et al. Microsoft COCO: Common Objects in Context. 2014.

[Liu et al. 2020]LIU, X. et al. Self-supervised learning: Generative or contrastive. arXiv,
p. arXiv–2006, 2020.

[Locatello et al. 2020]LOCATELLO, F. et al. Object-centric learning with slot attention.
arXiv preprint arXiv:2006.15055, 2020.

[Luo et al. 2020]LUO, D. et al. Exploring relations in untrimmed videos for self-supervised
learning. arXiv preprint arXiv:2008.02711, 2020.

[Newell e Deng 2020]NEWELL, A.; DENG, J. How useful is self-supervised pretraining
for visual tasks? In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. [S.l.: s.n.], 2020. p. 7345–7354.

[Oord, Li e Vinyals 2018]OORD, A. v. d.; LI, Y.; VINYALS, O. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[Oprea et al. 2020]OPREA, S. et al. A review on deep learning techniques for video
prediction. arXiv preprint arXiv:2004.05214, 2020.

[Patrick et al. 2020]PATRICK, M. et al. Multi-modal self-supervision from generalized
data transformations. arXiv preprint arXiv:2003.04298, 2020.

[Purushwalkam e Gupta 2020]PURUSHWALKAM, S.; GUPTA, A. Demystifying Con-
trastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases. 2020.

Referências 38

[Qian et al. 2020]QIAN, R. et al. Spatiotemporal contrastive video representation learning.
arXiv preprint arXiv:2008.03800, 2020.

[Racah e Chandar 2020]RACAH, E.; CHANDAR, S. Slot contrastive networks: A contras-
tive approach for representing objects. arXiv preprint arXiv:2007.09294, 2020.

[Russakovsky et al. 2015]RUSSAKOVSKY, O. et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, Springer, v. 115, n. 3, p. 211–252,
2015.

[Srivastava, Mansimov e Salakhudinov 2015]SRIVASTAVA, N.; MANSIMOV, E.; SA-
LAKHUDINOV, R. Unsupervised learning of video representations using lstms. In:
International conference on machine learning. [S.l.: s.n.], 2015. p. 843–852.

[Tan et al. 2018]TAN, C. et al. A survey on deep transfer learning. In: SPRINGER.
International conference on artificial neural networks. [S.l.], 2018. p. 270–279.

[Xu et al. 2015]XU, B. et al. Empirical evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853, 2015.

[Yao et al. 2020]YAO, T. et al. Seco: Exploring sequence supervision for unsupervised
representation learning. arXiv preprint arXiv:2008.00975, 2020.

[Yi et al. 2019]YI, K. et al. Clevrer: Collision events for video representation and reasoning.
arXiv preprint arXiv:1910.01442, 2019.

[You, Gitman e Ginsburg 2017]YOU, Y.; GITMAN, I.; GINSBURG, B. Large batch trai-
ning of convolutional networks. arXiv preprint arXiv:1708.03888, 2017.

[Yu et al. 2019]YU, W. et al. Efficient and information-preserving future frame prediction
and beyond. In: International Conference on Learning Representations. [S.l.: s.n.], 2019.

[Zhai et al. 2019]ZHAI, X. et al. S4l: Self-supervised semi-supervised learning. In: Pro-
ceedings of the IEEE international conference on computer vision. [S.l.: s.n.], 2019. p.
1476–1485.

[Zhai et al. 2019]ZHAI, X. et al. A large-scale study of representation learning with the
visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

[Zhang, Isola e Efros 2016]ZHANG, R.; ISOLA, P.; EFROS, A. A. Colorful image co-
lorization. In: SPRINGER. European conference on computer vision. [S.l.], 2016. p.
649–666.

[Zhang, Isola e Efros 2016]ZHANG, R.; ISOLA, P.; EFROS, A. A. Split-Brain Autoenco-
ders: Unsupervised Learning by Cross-Channel Prediction. 2016.

Referências 39

[Zhou et al. 2018]ZHOU, J. et al. Graph neural networks: A review of methods and
applications. arXiv preprint arXiv:1812.08434, 2018.

[Zhuang et al. 2020]ZHUANG, C. et al. Unsupervised learning from video with deep neural
embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. [S.l.: s.n.], 2020. p. 9563–9572.

	Folha de rosto
	Introduction
	Theoretical Background
	Fundamental Concepts
	Basic Concepts
	Pretext Tasks
	Downstream Tasks

	Related Work
	Evaluation of Self-Supervised Methods
	Using Static Images
	Using Video Data

	Contrastive Learning
	Noise Contrastive Estimation (NCE)
	Simple Framework for Contrastive Learning of Visual Representations (SimCLR)
	Video Noise Contrastive Estimation (VINCE)

	Contrastive Learning of Structured World Models (C-SWMs)
	Algorithm
	Evaluation Metrics
	Why C-SWM ?
	Slot Contrastive Networks (SCN)

	Problems and Goals
	C-SWMs Evaluation
	C-SWMs Shortcomings
	POC 1 Goals

	Methodology
	Evaluation
	Datasets
	MNIST

	Experiments and Results
	Implementation
	Re-evaluation on Atari Environments
	Moving MNIST Evaluation
	Encoder and Hidden Dimension
	Number of Objects
	Number of epochs
	NT-Xent Loss Function
	Data Augmentation
	Slot Attention
	Number of objects versus Embedding dimension

	Conclusion
	Main Results
	Future Work

	Referências

