
Hush: A Lua-Based Shell Language
Gabriel Bastos

UFMG
Belo Horizonte, Minas Gerais, Brazil

bastos.gabriel@dcc.ufmg.br

Fernando M. Quintão Pereira
UFMG

Belo Horizonte, Brazil
fernando@dcc.ufmg.br

Abstract
Shells are one of the core tools in modern computer sys-
tems, and although traditional shells are powerful and ma-
ture tools, their age starts to show. As they lack support for
some common programming constructs, such as data struc-
tures and floating point numbers, companies such as Google
recommend avoidance of these tools for anything beyond
trivial usage. In this paper, we present Hush, a modern shell
programming language, which aims to surpass known limi-
tations in traditional shells. Hush is inspired by Lua, a well
established embedded script language, and thus supports
common programming paradigms. We provide a prototype
interpreter capable of support evaluation of the language in
real scenarios.

Keywords: Shell, Programming Language, Unix

1 Introduction
Shells are one of the core tools in modern computer systems,
and they fundamentally consist of a command interpreter ca-
pable of coordinating external programs. The concept of this
tool was born in 1965with thework of Glenda Schroeder [11],
and evolved into dozens of shells that exist at the present
moment. One of the most popular shells is the Borne Again
Shell [6], which was originally developed by Brian Fox in
1989, predating even the Linux kernel. The traditional con-
cept of a shell is stabilized in the POSIX standard [8], and
most implementations abide by such standard.

Although traditional shells are powerful and mature tools,
their age starts to show. Dealing with arrays can be clumsy,
associative arrays are limited if not completely unavailable,
there is no robust support for floating point numbers, many
arithmetic operators are lacking, among further limitations.
[7] In practice, beyond basic data structures are intractable,
and thus rarely used due to the lack of ergonomics. [9]

If you are writing a script that is more than 100
lines long, or that uses non-straightforward con-
trol flow logic, you should rewrite it in a more

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
UFMG, 2021, Belo Horizonte, MG, Brazil
© 2021 Copyright held by the owner/author(s).

structured language now. – Google’s shell style
guide [7]

These issues have motivated many efforts to make modern
shells that are capable of dealing with structured data and
general purpose programming. While some of these extend
traditional shells with new features, others relinquish the
POSIX [8] standard and implement novel syntax and seman-
tics. But most of these have one common characteristic, they
are shells that strive to become full-featured programming
languages. In this paper, we present Hush, a programming
language that strives to become a shell.

Hush is designed as the conjunction of a well established
embedded scripting language, and standard shell function-
ality. We expect this approach to provide a powerful tool
for building robust shell scripts. An interpreter prototype
was developed and is available for evaluating the language
in practical real scenarios.

2 Overview
Being inspired on the core concepts of Lua, Hush elaborates
and extends them by adding shell syntax and capabilities.
By combining the power of a full-featured programming
language with the expressiveness of shells, Hush strives to
be a shell that is well suited for building robust solutions
that orchestrate external programs.

Hush provides basic support for threemajor programming
paradigms. For imperative programming, basic constructs
such as sequential statements, mutable variables, condition-
als, loops and procedures are supported. Functions are first-
class values, supporting higher-order parameters, variable
capturing and recursive calls, which are the basic tools for
functional programming. Finally, objects can be implemented
with dictionaries, which supports methods with instance ac-
cess and shorthand call syntax, also allowing inheritance
and specialization.
As in Lua, Hush provides strong and dynamic typing

based on a handful of built-in types, and does not provide
user-defined types. Row polymorphism is provided through
duck typing. The intent is to keep the language simple, with-
out compromising too much expressiveness. Advanced Lua
features like metatables were disregarded in Hush.

Shell capabilities are expressed through command blocks,
which allow execution of external programs as first-class ex-
pressions. Fundamental shell features such as pipes, redirec-
tions, and variable substitution are provided with traditional
and intuitive syntax.

1

UFMG, 2021, Belo Horizonte, MG, Brazil Gabriel Bastos and Fernando M.Quintão Pereira

3 Syntax and Semantics
Hush’s syntax and semantics are extensively inspired in
those of Lua, aiming to provide a dynamic and agile pro-
gramming environment. Additionally, Hush provides spe-
cialized syntax for invoking and interconnecting external
programs, a feature that is essential to shells.

3.1 Syntax
Identifiers may be composed of alphanumeric and underline
characters, but must not start with a number, and neither be
a keyword. Single line comments are supported.

let if then else end for not do while return
in and or true false nil break self function

Listing 1. keywords

This is a comment.
Listing 2. comment syntax

All types except the error type have corresponding literal
syntax. Dict keys in literals must be valid identifiers.

let dict = @[
_nil: nil,
bool: true,
int: 42,
float: 3.14,
string: "abc",
char: 'c',
array: [1, '2', 3.14],
_function: function(x, y)

x + y
end,

]
Listing 3. literals syntax

Variables are declared with the let keyword, and can be
assigned with the = operator.

let x
x = 1

let y = 2
syntax sugar

Listing 4. variable declaration syntax

if conditionals are expressions, and may have an optional
else clause.

if <expr> then
<block>

end

if <expr> then
<block>

else
<block>

end

Listing 5. if expression syntax

Loops have a single and straightforward syntax:

while <expr> do
<block>

end

for <ident> in <expr> do
<block>

end

Listing 6. for and while loop syntax

Where <ident> is a valid identifier.

Specialized syntax is defined for invoking external programs,
which are grouped in blocks of one or more commands:

Standard command block
{

<cmd> <args>; # args are optional
<cmd> $<var> ${<var>}; # variable access
<cmd> > file.txt; # output redirection
<cmd> 2>1; # descriptor redirection
<cmd> < file.txt; # input redirection
<cmd> << "input"; # inline input
<cmd> | <cmd> | <cmd>; # pipes
<cmd> ?; # try operator

}
Capture command block
(supports all constructs described above)
${ <cmd> } # trailing semicolon is optional

Listing 7. command blocks

Hush provides the following operators:
Unary:

• Logical: not (prefix)
• Arithmetic: - (prefix)
• Field access: [], . (postfix)
• Function call: () (postfix)

Binary:
• Arithmetic: *, /, %, +, -
• Relational: >, <, >=, <=
• Equality: ==, !=
• Logical: and, or
• String concatenation: ++ (right associative)

Expressions may be of the following kinds:
• <lit> # literal
• <ident> # variable access
• self # self value access
• <unop> <expr> # unary operator
• <expr> <binop> <expr> # binary operator
• <if> # if conditional expression
• <expr>[<expr>] # field access
• <expr>.<ident> # field access
• <expr>(<args>) # function call
• <cmdblock> # command block

Where <args> is a comma-separated list of expressions.

2

Hush: A Lua-Based Shell Language UFMG, 2021, Belo Horizonte, MG, Brazil

Statements can be any of the following:
• let <ident> # variable declaration
• <lvalue> = <expr> # assignment
• return <expr> # expr is optional
• <loop>
• break # only in loops
• <expr> # expression statement

Finally, a Hush program consists of a block of statements,
which need not be separated by any token.

3.2 Semantics
Although Hush follows the base semantics of Lua, many
aspects have been revised, both to accommodate the shell
capabilities, and to circumvent known quirks of the base lan-
guage. Like Lua, Hush relies heavily on the expressiveness
of it’s builtin types, as it doesn’t support user-defined types.
In such type system, we have the first major change from
Lua’s semantics, as some types have been redesigned, and
the novel error type has been added. The types in Hush
are:

• nil: the unit type, used for missing values.
• bool: the boolean type.
• int: a 64 bit integer type.
• float: a 64 bit floating point type.
• char: a C-like unsigned char type.
• string: an immutable homogeneous array of chars.
• array: a 0-indexed heterogeneous array.
• dict: a heterogeneous hash map.
• function: a first-class callable function.
• error: a special error type, to ease distinction of errors
from other values.

Therefore, comparing to Lua, both number and table
types have been separated into the int, float, array and
dict types. Such decision aims to allow finer grained control
over values, allowing distinctions between such types when
necessary. Additionally, arrays in Hush are 0-indexed, in
contrary to Lua, where arrays are 1-indexed.
Hush performs type coercion only in arithmetic operators.

Logical operators, if expressions and while loops expect
boolean arguments, and will panic if supplied with values of
any other type. Arithmetic operators may only be applied to
numeric types, and will promote ints to floats if necessary.
Relational operators may only be applied to pairs of numeric,
char or string values. The [] operator accepts integer indices
for strings and arrays, and all types for dicts. Finally, the dot
field access operator is syntax sugar for string indexes, as in
my_dict.field == my_dict["field"].

Scope in Hush is static, and closures are supported. As all
variables must be declared, the scope of identifiers is directly
stated in the code. All variables are references, and all types
except array and dict are immutable.
Functions are declared with a precise amount of parame-

ters, and such exact amount must be supplied when calling.

Unlike Lua, functions return a single value. Function bodies
and if expression blocks result in the value of the last state-
ment. Non-expression statements result in nil. Additionally,
function bodies can access the self variable, which corre-
sponds to the dict containing the function when calling in
conjunction with the dot operator, as in obj.fun(), or nil
otherwise.

Hush has two distinct error mechanisms, namely errors
and panics, which exist to distinguish between recoverable
and irrecoverable errors. For handling recoverable errors,
Hush adopts a simple strategy, very similar to the one im-
plemented in the Go programming language. [2]
The error type is provided for recoverable errors, and

can be instantiated by the std.error function. Values of
the error type are immutable, but otherwise act like dicts,
containing two fields: a message string, and a context of
any type. Examples of recoverable errors are:

• file not found
• permission error
• invalid format
• command not found
• command returned non-zero exit status

Panics are irrecoverable errors, caused by ill-formed pro-
grams. When a panic occurs, Hush immediately halts the
script execution, and displays the error message to stderr.
Examples of errors that cause a panic are:

• integer division by zero
• array index out of bounds
• attempt to call a value that is not a function
• missing arguments in function call

3.3 Command Blocks
In Hush, command blocks are composed of one or more
commands, which themselves are composed of one or more
basic commands.
A basic command consists of a program name, the list

of arguments for such program, optional redirections, and
the optional try operator, as shown in Listing 7. On execu-
tion, the arguments are evaluated, and path environment
lookup determines the program executable location. Hush
then forks, sets up the requested redirections, and execs the
target executable with the given arguments. Execution is
then awaited, and the status code is obtained. If the status is
different from zero, an error is produced, and the command
block execution bails unless the try operator is present.
Commands are either a single basic command, or a

pipeline. Pipelines are a mechanism of data flow parallelism,
where the standard output of a program is attached to the
standard input of the following program, through an Unix
pipe. After all pipes are attached, all programs are executed
simultaneously, and execution ends when the last program
terminates. In Hush, a basic command results in a single

3

UFMG, 2021, Belo Horizonte, MG, Brazil Gabriel Bastos and Fernando M.Quintão Pereira

result value (zero or error), and pipelines result in a list of
those values.
Finally, command blocks are a list of commands, which

are executed sequentially. Currently, there are two kinds of
command blocks: standard and capture. In standard blocks,
all commands inherit the shell’s standard I/O. In capture
blocks, the output of all commands is captured through an
Unix pipe, and stored by Hush. In this case, the result of the
block’s execution is a dictionary containing the execution
status, the stdout, and the stderr. Therefore, when using the
capture block, one can access the produced output as strings
through such fields.

4 Tooling
The standard implementation of Hush currently supports all
features described in this paper. Due to the context sensitive
lexical grammar of the language, a state-machine lexer was
manually implemented. In order to provide good error mes-
sages, and allow full error reports for Hush programs, the
implementation also features a recursive descent parser with
custom synchronization strategies. Static program analysis
is also implemented, not only to prevent invalid programs,
such as those with usage of undeclared variables, but also
to transform variable access into stack relative addresses,
eliding variable lookup during runtime.

As for the runtime, simpler techniques have been applied.
The interpreter is implemented as a basic recursive tree
walker, and garbage collection is provided with the aid of a
library. Command execution is manually implemented on
top of system libraries, and tail call is implemented as the
only notable optimization of program execution.

5 Related Work
There are two main families of modern shells. The first of
them is based on traditional shells like the Bourne Again
Shell, the C Shell, the Korn Shell, or the Almquist Shell.
Some examples of these are the Z Shell [10] and the De-
bian Almquist Shell [13]. The second family consists of lan-
guages that have completely relinquished the POSIX stan-
dard [8]. Such languages include academic works like Choc
[9], Magritte [1] and the Directed Acyclic Graph Shell [12].
Also in this family we place not-exactly academic, but in-
dependent initiatives like the Fish Shell [3], the Oil Shell
[5], and the NuShell [14]. While most of these are shells
that strive to become full-featured programming languages,
Hush is a rework of a successful programming language into
a shell. By adding shell syntax and capabilities on top of a lan-
guage based on the core concepts of Lua, Hush constitutes
a novel tool on the shell universe.

6 Final Thoughts
In this paper, we have presented Hush, a Lua-based shell
language. Hush features core shell capabilities, including

variable substitution, pipes, redirections and output captur-
ing, on top of a general purpose scripting language inspired
by Lua. A reference implementation of the interpreter is
provided for evaluating a preliminary version of the lan-
guage [4].
There are many directions for future work. For instance,

it would be interesting to augment the interpreter to allow
interactive input, allowing the usage of Hush as an interac-
tive shell. Further, in order to allow composition of complex
scripts and libraries, a module system would be a valuable
addition to the language. Finally, a usability study of the
language in real-world scenarios would provide insights on
the usefulness and possible shortcomings of the tool.

References
[1] Jeanine Miller Adkisson. 2019. Magritte. In Proceedings of the 3rd

International Companion Conference on Art, Science, and Engineering of
Programming - Programming '19. ACM Press. https://doi.org/10.1145/

3328433.3328467

[2] The Go Authors. 2021. The Go Programming Language. https:

//golang.org/ Acesso em agosto de 2021.
[3] Axel Liljencrantz, et al. 2005. Fish: a smart and user-friendly command

line shell. https://fishshell.com/ Acesso em janeiro de 2021.
[4] Gabriel Bastos and Fernando Magno Quintão Pereira. 2021. Hush: a

unix shell based on the Lua programming language. https://github.

com/gahag/hush Acesso em setembro de 2021.
[5] Andy Chu. 2017. Oil: a new Unix shell. http://www.oilshell.org/

Acesso em janeiro de 2021.
[6] Brian Fox. 1989. Bash is in beta release! https://groups.google.

com/group/gnu.announce/msg/a509f48ffb298c35 encaminhado por
Leonard H. Tower Jr. em 8 de junho de 1989. Acesso em março de 2021.

[7] Google. 2021. Google’s Shell Style Guide. https://google.github.io/

styleguide/shellguide.html Acesso em março de 2021.
[8] IEEE. 2017. IEEE Std 1003.1-2017, Standard for Information Tech-

nology – Portable Operating System Interface (POSIX). https:

//pubs.opengroup.org/onlinepubs/9699919799/ Acesso em janeiro de
2021.

[9] Michael MacInnis. 2010. Choc : a command and programming language.
Ph.D. Dissertation. https://doi.org/10.22215/etd/2010-09226

[10] Peter Stephenson, et al. 1990. Zsh: a shell and a powerful scripting
language. https://www.zsh.org/ Acesso em janeiro de 2021.

[11] Louis Pouzin. 2021. The Origin of the Shell. https://www.multicians.

org/shell.html Acesso em agosto de 2021.
[12] D. Spinellis and M. Fragkoulis. 2017. Extending Unix Pipelines to

DAGs. IEEE Trans. Comput. 66, 9 (2017), 1547–1561. https://doi.org/

10.1109/TC.2017.2695447

[13] Herbert Xu. 1996. The Debian Almquit Shell. https://git.kernel.org/

pub/scm/utils/dash/dash.git Acesso em março de 2021.
[14] Jonathan Turner Yehuda Katz. 2019. Nushell: a new type of shell.

https://www.nushell.sh/ Acesso em janeiro de 2021.

4

https://doi.org/10.1145/3328433.3328467
https://doi.org/10.1145/3328433.3328467
https://golang.org/
https://golang.org/
https://fishshell.com/
https://github.com/gahag/hush
https://github.com/gahag/hush
http://www.oilshell.org/
https://groups.google.com/group/gnu.announce/msg/a509f48ffb298c35
https://groups.google.com/group/gnu.announce/msg/a509f48ffb298c35
https://google.github.io/styleguide/shellguide.html
https://google.github.io/styleguide/shellguide.html
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://doi.org/10.22215/etd/2010-09226
https://www.zsh.org/
https://www.multicians.org/shell.html
https://www.multicians.org/shell.html
https://doi.org/10.1109/TC.2017.2695447
https://doi.org/10.1109/TC.2017.2695447
https://git.kernel.org/pub/scm/utils/dash/dash.git
https://git.kernel.org/pub/scm/utils/dash/dash.git
https://www.nushell.sh/

	Abstract
	1 Introduction
	2 Overview
	3 Syntax and Semantics
	3.1 Syntax
	3.2 Semantics
	3.3 Command Blocks

	4 Tooling
	5 Related Work
	6 Final Thoughts
	References

