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Abstract
This paper introduces amethodology to generatewell-defined
executable benchmarks in the C programming language.
The generation process is fully automatic: C files are ex-
tracted from open-source repositories, and split into com-
pilation units. A type reconstructor infers all the types and
declarations required to ensure that functions compile. The
generation of inputs is guided by constraints specified via
a domain-specific language. This DSL refines the types of
functions, for instance, creating relations between integer
arguments and the length of buffers. Off-the-shelf tools such
as AddressSanitizer and Kcc filter out programs with un-
defined behavior. To demonstrate applicability, this paper
analyzes the dynamic behavior of different collections of
benchmarks, some with up to 30 thousand samples, to sup-
port several observations: (i) the speedup of optimizations
does not follow a normal distribution—a property assumed
by statistical tests such as the T-test and the Z-test; (ii) there
is strong correlation between number of instructions fetched
and running time in x86 and in ARM processors; hence, the
former—a non-varying quantity—can be used as a proxy for
the latter—a varying quantity—in the autotuning of compi-
lation tasks. The apparatus to generate benchmarks, plus a
collection of 30K programs thus produced, is publicly avail-
able.
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1 Introduction
Predictive compilation is a family of techniques whose goal
is to let optimizing compilers treat programs differently. The
predictive compiler is trained onto a large corpus of pro-
grams, determining, for each one of them, the sequence of
analyses and optimizations that suits that code better. Once
given an unknown program, the compiler uses the knowl-
edge acquired during training to determine the best way to
treat this new code. Predictive compilation methodologies
have been known for many years [32, 33, 37, 51]. Neverthe-
less, the growing popularity of machine learning techniques
have attracted new attention to this field, and much progress
in the design and implementation of predictive compilers
has been attained in the last five years [3, 8, 9, 13, 15, 18, 21,
22, 38, 42, 47, 53, 54].

The Need for Benchmarks. Training a predictive compiler
requires benchmarks, as emphasized in Wang and O’Boyle
[49]’s survey. Thus, there has been much recent research
effort along the automatic synthesis of large collections of
benchmarks. In 2016, Mou et al. [38] released Poj: 104 classes
of programming problems, each with 500 solutions. Later,
in 2017, Cummins et al. [14] produced ClGen, a tool that
synthesizes OpenCL benchmarks. In 2021, da Silva et al. [18]
released AnghaBench, a suite with more than one million
compilable programs. A few months later, Puri et al. [43]
released CodeNet. Like Poj, the CodeNet suite consists of
solutions to programming problems; however, this collection
is two orders of magnitude larger.

The Challenge: Sound Executable Code. Most of the
research to create benchmarks orbit around C, or around
similar languages, such as OpenCL. Programs written in
these languages might present undefined behaviors: the exe-
cution of actions not defined by the standard semantics of
the language [30]. Consequently, large collections of bench-
marks [18, 38] reconstructed from open-source repositories
are formed by programs that compile but do not run. To
give the reader some perspective on the problem, notice that
CompilerGym [15], a framework for the autotuning of com-
pilation tasks, provided 1,158,701 benchmarks spread across
12 datasets in October 2022. However, before Jotai programs
were incorporated to it, only 23 programs from CBench [25]
would come with executable inputs.

Benchmarks generated to emulate human-made code have
been released recently [2, 6, 7, 14, 47]. Two of these collec-
tions contained C code [2, 6], but only Berezov et al.’s Co-
laGen could be executed automatically. These are simple
kernels — nests of loops that process arrays. Although sim-
ple, every program that we tried to run showed some form
of undefined behavior, once compiled with Kcc [30]. We also
compiled Armengol-Estapé et al.’s ExeBench with Kcc. In
this case, compilation is not automatic: we had to manually
fill up missing libraries. In spite of that, all the programs that
we run contained undefined behavior. During our experi-
ence with these benchmark generators, we also had to deal
with another limitation: they do not provide a way to steer
the generation of program inputs. Inputs are hard-coded
in the synthesizer: essentially, they consist of large buffers
filled with random values. It is not possible, for instance, to
establish relations between function arguments.



The Contributions of this Work. The goal of this pa-
per is to propose a methodology to generate executable C
benchmarks. This methodology exists around JotaiLang, a
domain-specific language that we have designed to generate
inputs for programs. The process to generate benchmarks
relies on a number of techniques and tools:

Techniques: JotaiLang lets developers impose cons-
traints on the inputs that are randomly tried on each
benchmark. Constraints are derived from the signa-
ture of the target function. This combination of types
and constraints prunes the space of possible inputs;
hence, focusing input generation on values that are
more likely to result into well-defined executions.

Tools: (i) a web crawler that retrieves C functions from
GitHub; (ii) an off-the-shelf type inference engine for
C that ensures that those functions compile [34, 35]
(iii) a code generator that produces drivers to run
each benchmark; (iv) a Valgrind plugin [45] that mea-
sures coverage of these inputs; and (v) Kcc [30] plus
Asan [46] to detect undefined behaviors.

Throughout the process of generating benchmarks and
interacting with people who use them, we have compiled a
list of requirements that these programs must meet:

Compile-and-run: each benchmark comes in a sepa-
rate file as an independent compilation unit, with all
the drivers necessary to run it.

Sound: each benchmark abides by the semantics that
Hathhorn et al. [30] have defined for the C program-
ming language.

Deterministic: the library that generates inputs is hard-
coded in each benchmark, and uses a deterministic
number generator.

Profilable: benchmarks can contain multiple input sets.
Some can be used for training and others for testing.

Visible: Jotai benchmarks do not invoke library func-
tions. Hence, every instruction is visible [1]. Thus, a
sanitizer like Kcc can observe the execution of every
instruction when looking for undefined behavior.

Observable: every function that makes up Jotai returns
a value. This output can be used as a way to find bugs
in compilers and interpreters.

Clean: Everymemory allocated by that function’s driver
is deallocated before termination.

Summary ofResults. Wehavemade a collection of 36,223
executable programs mined from GPL repositories publicly
available. Since October 2022, 18,761 of these functions are
available as a CompilerGym dataset [15]. Nevertheless, Jotai
benchmarks are extracted from open-source repositories, and
there is no limit for how many programs can be created via
the methodology that Section 3 introduces. Section 4 de-
scribes some uses of the Jotai collection. Section 4.1 shows

that it is fair to expect the construction of a valid bench-
mark (no undefined behavior dynamically detected by Kcc)
for each 34-35 functions that we find in C files from open-
source repositories. Section 4.2 analyses the speedup of op-
timizations on different subsets of the Jotai collection and
on Spec Cpu2017. Such speedups do not follow a normal
distribution, which is assumed in several statistical tests. Sec-
tion 4.3 observes a strong correlation between the running
time of programs and the number of instructions fetched
on Intel i7 and on ARM A15 processors. Correlation holds
when programs are compiled with different optimization
levels. Section 4.4 employs machine learning models to pre-
dict the ‘speedup’ effect of optimizations based on features
extracted from source code. These features are represented
as histograms, which capture the occurrences of opcodes
of LLVM instructions in the programs [19]. By using these
histograms as predictive indicators, accurate speedup predic-
tion is demonstrated. Finally, Section 4.5 discusses structural
properties of the programs. On average, functions tend to
comprise four to six basic blocks, and about half the func-
tions have their control-flow graphs fully covered by inputs
that we generate.

2 The Anatomy of a Benchmark
Jotai benchmarks are produced out of programs mined from
open-source repositories. The generation of benchmarks
works by: (i) extracting C files via a web crawler; (ii) splitting
functions in each C file into single files; (iii) inferring types
for each benchmark file; (iv) generating a driver for each
compilable benchmark file; (v) filtering out inputs that lead
to undefined behavior. Figure 1 shows these different steps,
and Example 2.1 illustrates the first steps of this process.

Repeat to add a new input set into the benchmark
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Figure 1. The benchmark generation process. This process
is entirely automatic, and requires starting one single script.

Example 2.1. Figure 2 shows a function from status.c, a
file taken from the sqlite repository. There are eight func-
tions with a body within status.c. Jotai tries to produce a
benchmark out of each one of them. The process starts with
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code extraction: function countLookasideSlots is placed
into a separate C file: the candidate compilation unit (CCU).
Types and missing declarations are then inferred for this
CCU via a tool called PsycheC [34, 35]. Figure 2 (b) shows
the types inferred for function countLookasideSlots. If
PsycheC terminates successfully, then the reconstructed pro-
gram is guaranteed to compile. However, PsycheC might
fail. In this case, the candidate compilation unit is discarded.

… 
static u32 countLookasideSlots(LookasideSlot *p) {
  u32 cnt = 0;
  while( p ){
    p = p->pNext;
    cnt++;
  }
  return cnt;
}
… 

175
176
177
178
179
180
181
182
183
184

/* Forward declarations */
typedef struct TYPE_3__  TYPE_1__;

/* Type definitions */
typedef  long u32 ;
struct TYPE_3__ {
  struct TYPE_3__* pNext;
};
typedef  TYPE_1__ LookasideSlot;

(b)

(a)

Figure 2. (a) Code snippet taken from file status.c from the
sqlite repository. (b) Types that PsycheC infers to ensure
compilation of function countLookasideSlots.

Visible Instructions. Example 2.1 illustrates one of the prin-
ciples of Jotai: benchmarks yield only visible instructions.
Following Álvares et al. [1]’s terminology, given a program 𝑃

with source code 𝑆 , and a compiler𝐶 , the visible instructions
of 𝑃 are the instructions that 𝐶 produces for statements that
appear in 𝑆 . Every other instruction required for the exe-
cution of 𝑃 is an invisible instruction. Invisible instructions
come from dynamically linked libraries and routines added
by the compiler, such as initialization (pre-main code) and
finalization (post-main code). To meet this visibility require-
ment, Jotai benchmarks are not allowed to invoke functions
without bodies. This restriction serves two purposes. First,
it eases the task of discovering undefined behavior during
the execution of the program, as tools like Kcc or FramaC
only have access to the visible part of a program. Second, it
prevents the benchmark from invoking malicious code.
Drivers. A candidate compilation unit that compiles be-
comes a candidate executable unit (CXU). If Jotai succeeds
in producing an input for a CXU that does not incur in un-
defined behavior, then this program becomes what we call a
1-input driver. These benchmarks can be augmented grad-
ually. If Jotai succeeds in generating a new input for an
n-input driver, then this program becomes an (𝑛 + 1)-input
driver. Input generation is steered by constraints, which,
in turn, Jotai derives from the type signature of the target
function. Constraint generation is the subject of Sections 3.1
and 3.2. For now, it suffices to know that each set of cons-
traints that yields a well-defined execution contributes one
input to the driver. Example 2.2 clarifies this terminology.

Example 2.2. Figure 3 shows a 2-input driver produced to
run the function in Example 2.1. This driver contains a switch
with two cases: each case feeds the function countLookaside
Slots with different inputs. Everything in Figure 3 is syn-
thesized automatically from the constraints in Section 3.2.1.

…
int main(int argc, char *argv[]) {
  if (argc != 2) {
    usage();
    return 1;
  }
  int opt = atoi(argv[1]);
  switch(opt) {
    case 0: { // int-bounds
      struct TYPE_3__ * aux_p[1];
      struct TYPE_3__ * p = _allocate_p(1, aux_p);
      long benchRet = countLookasideSlots(p);
      printf("%ld\n", benchRet);
      _delete_p(aux_p, 1);
      break;
    }
    case 1: { // linked
      struct TYPE_3__ * aux_p[10000];
      struct TYPE_3__ * p = _allocate_p(10000, aux_p);
      long benchRet = countLookasideSlots(p);
      printf("%ld\n", benchRet);
      _delete_p(aux_p, 10000);
      break;
    }
    default:
      usage();
      return 2;
  }
  return 0;
}
… 
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Figure 3. The driver produced by Jotai to run function
countLookasideSlots, seen in Figure 2.

Compile-and-Run. Example 2.2 illustrates some principles
enumerated in Section 1. First, concerning compilation, as-
suming that this two-input driver is in a file called driver.c,
we can compile it with simply “clang/gcc driver-c". Con-
cerning execution, we can run the executable file with either
the command “./a.out 0", or the command “./a.out 1". If
invoked without arguments, then the driver outputs a usage
guide with a brief explanation about each input set.
Profile. The driver seen in Example 2.2 features two sets
of inputs. Often, Jotai benchmarks provide more than that.
Multiple inputs let developers use the Jotai benchmarks
in a profile-guided setting, where some inputs are used as
training, and the others as testing.
Observe. The driver is also observable, meaning that it prints
the result of the function. In this simple example, the output
of interest is a simple scalar value; however, Jotai bench-
marks can print the contents of aggregate types, such as
instances of struct or union types. Notice that inspection
is shallow: recursive types like linked lists or trees are not tra-
versed. Jotai can also be configured to add timing routines
to print the execution time of the target function; however,
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this code is not portable across operating systems; hence, it
is disabled by default.
Clean up. Every case of a driver ends with calls to a routine
that frees allocated memory. This clean up is only necessary
when benchmarking functions whose signature contains ar-
guments of pointer type. Notice that Jotai is able to generate
recursive data structures, as in the second input set of Fig-
ure 3. Cleaning code will free every node that constitutes
a recursive data structure. As a consequence, every Jotai
benchmark runs until normal termination (exit code 0) when
compiled with an address sanitization; for instance, via gcc
-fsanitize=address.
Deterministic behavior. Jotai benchmarks are determinis-
tic, meaning that the execution of an 𝑛-driver with a certain
argument 𝑖, 1 ≤ 𝑖 ≤ 𝑛, will always lead to the execution of
the same sequence of instructions. To ensure determinism,
benchmarks are sequential programs: no multi-threading
is allowed. Furthermore, the routines that generate inputs
for the benchmark are hardcoded into the driver. These rou-
tines include code to produce scalars of every primitive type
in the ANSI C language specification, and code to gener-
ate recursive data structures like lists and trees. Function
countLookasideSlots in Example 2.1 contains one argu-
ment of a recursive type, as seen in Figure 2 (b). The second
case in Figure 3 will generate a linked list with 10,000 nodes
with this structure.

3 A Methodology to Generate Code
Figure 1 shows the steps to generate benchmarks. Part of this
methodology (outside the gray box), has been already used
in previous work [18], and we omit it from this presentation.
The rest of it is the subject of this section.

3.1 Extraction of Type Descriptors
The constraints that Jotai produces to guide the generation
of inputs—to be explained in Section 3.2—relies on type de-

scriptors. Type descriptors model the structure of the types of
the arguments of the CCU function. Descriptors are specified
by the grammar in Figure 4. Following C’s static semantic,
type descriptors determine a nominal type system, e.g., two
types are the same if they share the same names.

typeDesc

typeStruct

typeFun

typeBindings

typeName

typeScalar

( typeStruct | typeFun )*

struct <name> typeBindings

function <name> typeName typeBindings

<name> typeName typeBindings | ε

(unsigned)? typeScalar | * typeName
| struct <name>

char | int | short | long | float | double 

::=

::=

::=

::=

::=

::=

Figure 4. The grammar to specify type descriptors.

Example 3.1. Figure 5 (a) shows the type descriptors that
Jotai extracts for the function sum, in Figure 5 (b). The de-
scriptors expose the structure of aggregate type struct S,
and list the types used in the signature of function sum.

struct S {
  int data;
  char flag;
};
typedef struct S MyStruct;
void sum(MyStruct s, int* p, int n) {
  int sum = 0;
  if (s.flag == ’s’) {
    for (int i = 0; i < n; i++) {
      sum += p[i];
    }
  }
  s.data = sum;
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14

struct S
  | data int
  | flag char

function sum void
  | s struct S
  | p int*
  | n int

(b)(a)

Figure 5. Given the function sum in part (a), Jotai extracts
the type descriptors in part (b) of the figure.

Type descriptors are extracted from candidate compila-
tion units via a clang plug-in implemented with the “Re-
cursiveASTVisitor". This clang class is used to traverse and
extract information from the Abstract Syntax Tree of C pro-
grams. Once type descriptors are extracted, the process of
generation of inputs no longer uses the target function. In
other words, this function is analyzed only during the ex-
traction of type descriptors. After this point, the function is
treated as a black box.

3.2 The Constraint Generation Language
Type descriptors are used as inputs in the process of gener-
ating constraints for a program. Constraints can be thought
as refined types [24]. In other words, instead of saying that
the type of a variable is an integer, we say that this type is
an integer larger than zero, for instance. Figure 6 shows the
grammar of the constraint generation language. Constrai-
nts define essentially two properties over variables: value
and length. The former applies to any variable; the latter
only to variables of pointer types. The constraint language
also defines a few “algorithmic skeletons", which we shall
explain in Section 3.2.2. Example 3.2 provides examples of
constraint-based refinements.

Example 3.2. Consider 𝑛 and 𝑝 in the type descriptors of
Figure 5 (b). The type of 𝑛 is an integer, and 𝑝 has a pointer
type. Constraints let us:

• Relate 𝑛’s value with a constant, e.g., value(𝑛) > 0.
• Relate the length of the memory region referenced by
𝑝 with a constant, e.g., length(𝑝) > 10.

• Relate the two variables, e.g., length(𝑝) > value(𝑛).
• Constrain values within buffers, e.g., length(𝑝) ==

value(𝑛) + 1, value(𝑝 [𝑛]) ==′ \0′
4



constraint

comp

arith

skeleton

element

variable
__

const

comp ( ',' comp )*

arith (== | != | > | < | >= | <=) arith
skeleton

element (* | + | / | - | %) element
element

linked (<name> ',' <integer>)
dLinked (<name> ',' <integer>)
binTree (<name> ',' <integer> ',' <integer>)

const | (value | length) '(' variable ')'

<name> ( '[' ( <integer> | <name> | '_' ) ']' )*
<name > ( '.' <name> )*

<integer> | <floating-point> | <char> | <string>

::=

::=
|

::=
|

::=
|
|

::=

::=
|

::=

Figure 6. Examples of type descriptors that Jotai extracts
for struct S and function sum.

3.2.1 Generating Constraints. Users do not write cons-
traints for each benchmark. This process is implemented
in Python, as an extension of Jotai’s constraint generation
module. The constraint generation module lets users specify
existentials (e.g., “exists") or quantifiers (e.g., “for all") rang-
ing over type descriptors. Thus, the space of constraints is
searched by code that Jotai’s users write in Python, and the
constraints themselves are generated in textual format, and
then passed to Jotai’s input generator. Example 3.3 shows
examples of three different constraint generators.

Example 3.3. Figure 7 shows four different constraint gen-
eration methods. These methods are implemented in Python.
They receive a list of constraints, which must be augmented,
plus a type descriptor. The type descriptor contains a list of
variables that are scalars, pointers or aggregates. The termi-
nals in Figure 6 are represented as Python classes, which can
be combined in various ways to build complex constraints.

def intBounds(ctrs, type_desc):
  for name in type_desc.scalars:
    ctrs += Value(name, 100)

def bigArr(ctrs, type_desc):
  for name in type_desc.scalars:
    ctrs += Value(name, 255)
  for name in type_desc.pointers:
    ctrs += Length(name, 65025)

def eqValLen(ctrs, type_desc):
  for n in type_desc.scalars:
    for p in type_desc.pointers:
      ctrs += Length(p, Value(n))
      remove(type_desc, p)def zeroEnd(ctrs, type_desc):

  for n in type_desc.scalars:
    for p in type_desc.pointers:
      c0 = Value(n, Plus(n, 1))
      c1 = Length(p, Value(n))
      c2 = Value(Arr(p, Value(n)), '\0')
      ctrs += [c0, c1, c2]
      remove(type_desc, p)

Figure 7. Examples of four constraint generation methods.

3.2.2 Algorithmic Skeletons. It is possible to use length
and value constraints to define recursive data structures
such as linked lists and trees. However, we found it easier
to define a small library of algorithmic skeletons to specify

data structures. Currently, we define three skeletons, which
Figure 6 shows: linked, for linked lists; dLinked for doubly
linked lists; and binTree for binary trees. These skeletons
are chosen according to the type descriptor. If the descriptor
contains one recursive reference, Jotai tries to use linked to
generate linked lists. If the descriptor contains two recursive
references, then Jotai can use either dLinked or binTree to
generate data structures.

3.3 Filtering Out Undefined Behavior
There exist ANSI C programs that can be compiled by any
compiler that conforms to the different C Standards, but
whose runtime behavior is undefined. Quoting Hathhorn
et al. [30]: “The C11 standard mentions situations that lead to

undefined behavior in 203 articles". Among such situations,
77 involve aspects of the C language itself; i.e., are produced
by the use of grammatical constructions of the language.
Another 24 undefined behaviors are caused by omissions by
the parser or the preprocessor. And there are 101 undefined
behaviors caused by misuse of functions and variables from
the language’s standard library [17] (Appendix J).

The benchmarks that we produce are reconstructed from
programs available in open-source repositories. Thus, un-
defined behaviors present in these programs are likely to
persist in their benchmark versions. Additionally, our type
reconstructor might introduce undefined behavior into pro-
grams that were originally correct, as Example 3.4 shows.

Example 3.4. Figure 8 shows a program whose types were
reconstructed by PsycheC. PsycheC reconstructs u64 and
s64 as “int". However, the former was originally declared as
“unsigned long", and the latter as “long". In this case, the left
shift in Line 04 in Figure 8 yields undefined behavior, because
the shift count exceeds the width of the type that PsycheC
has inferred. The program in Figure 8, when compiled with
gcc -O0, gcc -O1 and clang -O0 outputs the same value.
However, if compiled with clang -O1 then it produces a
different value when running on OSX 11.2.

3.3.1 AddressSanitizer and KCC. Detecting undefined
behavior is not easy. Indeed, with the current technology
presently available, it might be impossible. As pointed out by
Memarian et al. [36]: “The divergence among the de facto and

ISO standards, the prose form, ambiguities, and complexities

of the latter, and the lack of an integrated treatment of concur-

rency, all mean that the ISO standard is not at present providing

a satisfactory definition of C as it is or should be." Thus, to fil-
ter out undefined behavior, we adopt a best-effort approach,
based on a combination of two tools: AddressSanitizer [46]
and Kcc [30].
We compile every candidate execution unit with clang

and gcc, using, in both cases, the following flags: “-fsanitize
= address, undefined, signed-integer-overflow -fno
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static int foo(s64 nblocks) {
  s64 sz, m;
  int l2sz;
  m = ((u64) 1 << (64 - 1));
  for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
    if (m & nblocks) {
      break;
    }
  }
  sz = (s64) 1 << l2sz;
  if (sz < nblocks) {
    l2sz += 1;
  }
  return (l2sz - L2MAXAG);
}

int main(int argc, char *argv[]) {
  int benchRet = foo(255);
  printf("%d\n", benchRet);
  return 0;
}

01
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int L2MAXAG = 0;

typedef int s64;
typedef int u64;

Types inferred 
by Psyche-C:

int L2MAXAG = 32;

typedef long s64;
typedef unsigned long u64;

Original types:

Figure 8. The left shift in Line 04 causes undefined behavior
in this program.

-sanitize-recover=all". These flags invoke different ex-
tensions from AddressSanitizer [46]. However, even the
programs that run until normal termination (exit code zero),
and that output the same results with either clang or gcc can
still exhibit undefined behavior, as Example 3.5 illustrates.

Example 3.5. Consider the following program:
int main() {int i = 3; i = i++; return i;}
This program runs until normal termination when compiled
with the AddressSanitizer plugins. However, once com-
piled with Kcc, it stops with the error code UB-EIO8, i.e.:
“Unsequenced side effect on scalar object with side effect of

same object" (see C11’s Section 6.5:2).

Thus, to further remove malformed benchmarks, the pro-
grams that pass through the AddressSanitizer sieve are
then compiled with Hathhorn et al.’s Kcc. These programs
execute with a timeout. Using a timeout is paramount with
Kcc, for it slows down the target programs by a substan-
tial margin. Our experience with Kcc has presented us with
situations where programs that do not seem to sport any
undefined behavior would loop forever. Nevertheless, Kcc
detects more occurrences of undefined behaviors than ASan.

3.3.2 Freeing Memory. The length constraint, described
in Section 3.2, allocatesmemory for pointers. The -fsanitize
=address flag mentioned in Section 3.3.1 will stop programs
that leak memory. Thus, allocated memory must be freed
before the benchmark terminates. To ensure deallocation,
Jotai’s input generator uses a table of memory blocks to
store every block of memory that the input generator cre-
ates. Before the benchmark terminates, the table is traversed,
and blocks stored there are freed. This approach ensures
deallocation of memory used in recursive data structures,
like the ones created by algorithmic skeletons.

4 Evaluation
This section analyzes five research questions related to the
benchmarks produced via the Jotai methodology.

4.1 The Benchmark Generation Rate
Jotai benchmarks are produced out of programs publicly
available in open-source repositories. Thus, the number of
possible “seeds" for benchmarks is virtually unbounded. How-
ever, most of the functions in these repositories will not yield
valid benchmarks. This section analyzes the rate in which
benchmarks can be produced, in order to answer Question 1.

Question 1 (RQ1). What is the ratio of candidate functions

to viable programs generated by the methodology in Fig. 1?

Benchmarks: To answer Question 1, we apply the method-
ology from Figure 1 onto the GPL 3.0 benchmarks publicly
available in the AnghaBench repository on August 7th,
2022 (http://cuda.dcc.ufmg.br/angha/home). At that time, the
repository had 1,041,333 compilable C functions taken from
148 GitHub repositories, sorted by the number of stargaz-
ers. Out of this lot, 70,309 functions are leaf routines; that is,
functions that do not invoke other functions. We only apply
the Jotai methodology to the leaf routines, to ensure the
absence of invisible instructions in the benchmarks.
Hardware: Intel i7-6700T with 7.6GB of RAM.
Software: Benchmarks are compiled with clang 15.0 plus
AddressSanitizer and with Kcc 3.4.
Methodology: We apply six constraints on each leaf rou-
tine. Three constraints are the built-in skeletons linked (lk),
dLinked (dl) and binTree (bt). The former is applied onto
functions containing an argument whose type has a recur-
sive reference; dl and bt are applied onto types that contain
two recursive references. The last three constraints are:

int-bounds (ib): for every scalar 𝑛: value(𝑛) = 100.
big-arr-10x (bx): for every scalar𝑛: value(𝑛) = 10; and

for every pointer 𝑝: length(𝑣) = 100.
big-arr (ba): for every scalar 𝑛: value(𝑛) = 255; and for

every pointer 𝑝: length(𝑣) = 65, 025.

Discussion: Figure 9 shows the number of valid compilation
units produced with AddressSanitizer and with Kcc. Out
of 1,041,333 functions in AnghaBench, 70,309 were candi-
date compilation units, leading, in the end, to 36,223 bench-
marks that could be successfully compiled and executed with
Asan and Kcc. The success rate of Kcc depends on a timeout.
If we compile the first 1,000 compilation units produced via
int-bounds with Kcc, using a timeout of one second, then
we obtain 937 valid programs. Increasing this timeout to 10
seconds adds one more program to this collection. Kcc failed
to compile 17 programs; 46 other programs stopped with
clear error messages referring to the C11 Standard.
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40,062

ib bx lk

ASAN

KCC

ba dl bt #f

39,448 39,884 192 69 97 41,995

35,198 34,396 34,780 169 47 47 36,223

Figure 9.Number of valid execution units produced with the
Asan and the Kcc sieves. Results are cumulative: a program
that passes the Kcc sieve has also passed the Asan sieve. #f
is the total number of benchmark files produced. Each file
contains at least one and at most six different inputs.

4.2 Normality
The goal of this section is to demonstrate how Jotai can
be used as a means to analyze and understand the dynamic
behavior of programs. Several statistical tests (e.g.: the T-
test, the Z-test, Pearson’s Correlation, etc) assume that data
comes from a normal distribution. The normal distribution
typically emerges from the accumulation of effects produced
by independent events [16]. Given that the different opti-
mization levels of a compiler are formed by the combination
of different optimizations, one could be tempted to believe
that optimization speedups obey a normal distribution. This
section evaluates this hypothesis.

Question 2 (RQ2). Does the speedup observed after the appli-

cation of compiler optimizations follow a normal distribution?

Benchmarks:We evaluate Question 2 onto three different
collections of programs:

SameRes: The 19,211 execution units produced via the
big-arr constraint that return a primitive value (int,
(uint, float, etc).

DynGr: The 856 execution units produced with big-arr
whose number of instructions executed is larger than
the number of different instructions fetched. These are
programs containing loops that run at least twice.

Spec: The 43 programs from SPEC CPU2017 [10]. We
use Spec to give the reader some perspective on how
Jotai programs compare with this well-established
benchmark suite.

Hardware: Intel i7-6700T with 7.6GB of RAM.
Software: Benchmarks are compiled with clang 15.0. We
count instructions using Valgrind [41]’s CfgGrind [45].
Methodology: We define speedup as the rate of instruc-
tions executed by the benchmark once compiled with clang
-O0 and clang -OX, where X ∈ {1, 2, 3, s, z}1. We measure
speedup using the number of instructions counted by Cfg-
Grind, instead of using running time, because this metric is
stable—running time is subject to much variation. Section 4.3
provides evidence that this methodology is sound.
Discussion: Figures 10, 11 and 12 summarize the results
observed in this experiment2. Each figure shows a density
1To keep the presentation short, we plot speedups relative to clang -O2;
however, we could observe very similar results for the other levels.
2To ease visualization, we crop the speedup at 8.0x in every density plot.

(left) and a quantile-quantile (right) plot. The former high-
lights means and variances in the measured speedups. The
latter compares the observed distribution with a normal
distribution with similar parameters. The gray area in the
QQ-plot delimits the area where normal data would be ex-
pected to exist. In all three cases, including Spec CPU2017,
the Shapiro-Wilk Normality Test returns a p-value lower
than 0.0001, indicating that the observed speedups are very
unlikely to come from a normal distribution.
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Figure 10.Density plot and QQ-plot for the 19,163 programs
in the SameRes suite of benchmarks. The density plot is
cropped at 8.0 to improve visualization. Mean = 1.54x, Me-
dian = 1.45x, Outliers (speedup greater than 8.0) = 130.
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Figure 11. Density plot and QQ-plot for the 856 programs
in DynGr. Mean = 2.91x, Median = 2.57x, Outliers = 48.

Optimizations bear stronger effects in programs contain-
ing loops, as the 90/10 Rule of Code Optimization implies [50,
Ch.3]. Thus, speedups are higher onDynGr (Median = 2.57x)
and Spec (Median = 2.72x) than on SameRes (Median =
1.45x). Nevertheless, even SameRes contains samples whose
speedup would be impossible under a normal distribution.
For instance, clang -O2 provokes a speedup higher than
500x in two programs of SameRes. The probability of ob-
serving this speedup under the assumption of a normal distri-
bution is zero for all practical purposes. Indeed, it is easy to
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Figure 12. Density plot and QQ-plot for the 43 programs
from SPEC17. Mean = 3.70x, Median = 2.72x, Outliers = 1.

write programs where the speedup obtained after standard
optimizations can be as large as one wants. As an exam-
ple, both clang and gcc are able to replace loops that sum
arithmetic progressions with 𝑂 (1) formulae.

4.3 Running Time vs Instructions Fetched
Programs produced via the Jotai methodology tend to run
for a very short time—they are code snippets. Fast execution
complicates using these programs to tune compilers, because
measurements become imprecise. Imprecisions manifest in
terms of high coefficients of variations (the ratio between
standard deviation and mean). As a consequence, differences
in the running times of variations of the same benchmark
cannot be distinguished via statistical tests, e.g, if the p-value
is used as the statistic to perform a significance test, then the
result will be inconclusive. Example 4.1 illustrates this issue.

Example 4.1. Figure 13 shows the coefficient of variation
for the 46 programs from the Jotai collection that run the
largest number of instructions when compiled with clang
-O2. The mean running time of these programs (arithmetic
averages of 10 samples) varies from 1.25 microseconds to
17 milliseconds. The coefficient of variation of the 5 fastest
programs is always above 0.3 (i.e., 30%) and always below
0.03 (i.e., 3%) for the 5 slowest programs.

Although the running time of Jotai benchmarks can vary,
the number of instructions that they execute is fixed: the
programs are deterministic and only contain visible instruc-
tions. This observation motivates the research question that
this section explores:

Question 3 (RQ3). How strong is the correlation between the

number of instructions executed by a Jotai benchmark and its

running time?

Benchmarks: The 46 programs seen in Example 4.13.
3Initially, we tried to use 50 programs; however, 4 of them could not be used
with Valgrind in the Odroid board, due to excessive memory consumption.
Without Valgrind they work correctly.
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Figure 13. Coefficient of variation for the 50 programs that
run more instructions when compiled with clang -O0 in
the Jotai collection.

Hardware: We measure correlations in two processors:
x86: i7-6700T, at 2.80GHz, with 7.6GB of RAM
arm: Odroid XU4 A15, at 2.00GHz, with 2GB of RAM

Both processors contain eight cores; however, programs run
sequentially, at maximum frequency.
Methodology:We average the time of 10 executions of each
benchmark, compiled with clang -O0 or clang -O2. We
count the number of instructions fetched per benchmark
using CfgGrind. Running time and instructions refer to
the function that constitutes the benchmark—the rest of the
driver is not analyzed.
Discussion: Figure 14 plots the running time of programs
versus the number of instructions they fetch. In contrast to
running time, the number of instructions executed is fixed
per benchmark. Figure 14 uses log scale in both axes; hence,
it gives the false impression that programs compiled at -O0
fetch as many instructions as programs compiled with clang
-O2. However, as already seen in Section 4.2, this difference
is large. To emphasize this distance, Figure 15 summarizes
all the populations displayed in Figure 14.

Figure 16 shows the Spearman and the Kendall Rank Cor-
relation Coefficients between the running time and the num-
ber of instructions executed per benchmark. Both ranks are
non-parametric; hence, recommended in the analysis of data
that comes from non-normal distributions. In both cases,
correlation is very high, tending to 1.0. We have omitted
Pearson’s Coefficient, which is not robust in face of outliers.
Nevertheless, Pearson’s Coefficient is also greater than 0.9
in all four cases. Notice that although absolute times tend to
be very different in the two boards, speedup ratios of clang
-O2 over clang -O0, considering averages, sums, maximums
and minimums tend to be very similar.

4.4 Speedup Prediction
Modern compilers, such as Clang, provide different levels of
optimization aimed at increasing the efficiency of executing
code. The application of these optimizations can lead to a
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Figure 14. The correlation between the running time and
the number of instructions executed per benchmark in two
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Figure 15. Summary of data used to produce Figure 14.

significant performance increase, commonly referred to as
‘speedup’. However, the degree of this improvement can vary
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clang -O0
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Kendall

clang -O2 clang -O0 clang -O2

Figure 16. Non-parametric correlation ranks between run-
ning time and number of instructions executed for the bench-
marks in Figure 14.

widely among different programs. In this section, we explore
the use of histograms of features extracted from the source
code as predictive indicators for speedup.

Question 4 (RQ4). Can the analysis of source code attributes

represented as histograms lead to accurate predictions of the

speedup from compiler optimizations?

Benchmarks: The collection of 35583 programs produced
with big-arr.
Software: Instructions are counted using Valgrind [41]’s
CfgGrind [45]. The predictive models utilize the standard
linear regression implementation provided by the Keras li-
brary. Each program’s individual features are captured into
a histogram using a custom Clang plugin, with features rep-
resenting opcode identifiers, loop depths, and the number of
basic blocks.
Methodology: Two linear regression models, built using
the Keras library, are employed in our analysis. The first
model, Model_O0, exclusively uses the histograms collected
from programs compiled with clang -O0. The second model,
Model_O0_O1, incorporates histograms obtained from both
clang -O0 and clang -O1 flags. The ‘speedup’ is defined as
the ratio between the number of instructions executed by a
programwhen compiledwith clang -O0 andwhen compiled
with clang -O1. In order to assess the relative performance
of the predictive models, the geometric mean of the speedups
obtained from the dataset served as a baseline for comparison.
The models were evaluated using Mean Squared Error (MSE)
and Mean Absolute Error (MAE). These metrics quantify the
discrepancy between predicted and actual values, with lower
values indicating superior model performance.

Model Version MSE MAE
Model_O0 0.00701 0.05353
Model_O0_O1 0.00592 0.04605
Geometric mean 0.01561 0.10137

Table 1. Error Metrics for Regression and Geometric Models

Discussion: Table 1 summarizes the results observed in this
experiment. The findings indicate that the Keras models out-
perform the geometric model in terms of both error metrics,
irrespective of the dataset used for training. Further, the
decrease in MSE and MAE values in the Model_O0_O1 com-
pared to the Model_O0 suggests that including histograms
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compiled with the clang -O1 option improves the model’s
prediction capacity.

The results suggest that histograms derived from opcode
identifiers, loop depths, and the number of basic blocks in the
source code can successfully predict speedup resulting from
compiler optimizations. Histograms are straightforward data
structures: they can be extracted from programs via one
linear pass over the program’s code. Thus, we speculate that
histograms could be used, for instance, in the context of a
Just-in-Time compiler, to gauge the profitability of compiling
programs with different optimization levels.

4.5 Coverage
Most of the programs that Jotai produces are very simple:
their execution amounts to a linear path of basic blocks.
Nevertheless, some large programs can be found in this col-
lection. This section provides the reader with some idea
about structural properties of these programs, namely, the
average number of basic blocks visited and the proportion
of branches traversed during execution of benchmarks.

Question 5 (RQ5). What is the expected size of Jotai bench-

marks, and what is the portion of this size that can be covered

by simple constraints?

Benchmarks: The 856 programs in the DynGr collection
described in Section 4.2.
Hardware: Intel i7-6700T, at 2.80GHz, with 7.6GB of RAM
Software: Same apparatus seen in Section 4.2.
Methodology: We use CfgGrind to count the number of
basic blocks visited during the execution of each benchmark.
CfgGrind reconstructs the dynamic slice of the program. In
other words, it builds the control-flow graph formed by the
instructions fetched during the execution of the program.
Such a dynamic slice is formed by basic blocks, i.e., maximal
sequences of instructions that can execute in sequence, and
phantom blocks, i.e., targets of branches that have not been
visited. If a dynamic slice does not contain phantom blocks,
then it has been completely visited during the execution of
the program.
Discussion: Figure 17 shows the number of basic blocks
visited and the number of phantom blocks observed dur-
ing the execution of the 856 benchmarks in DynGr using
the big-arr constraints. We show data for benchmarks com-
piled with different optimization levels of clang. On average,
benchmarks have four to six basic blocks, with median five.
The median value of phantom blocks is zero for most opti-
mization levels. The number of benchmarks that are fully
covered (i.e., that do not contain phantom blocks) varies per
optimization level, peaking at 564 with clang -Oz.
Figure 18 summarizes the data presented in Figure 17.

The row sum is the total of basic blocks visited during the
execution of the benchmarks at different optimization levels
or the total of different phantom blocks encountered during
execution. Optimizations tend to reduce the number of basic
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Figure 17. Number of basic blocks and phantom blocks
found during the execution of the programs in DynGr.

blocks; however, this behavior is not always true: clang -O3
increases the number of basic blocks, due to control-flow
replication. Code vectorization, for instance, might replicate
the body of loops. Nevertheless, although the static size of the
program grows, its dynamic size—the number of instructions
fetched—tends to decrease, as seen in Section 4.2.
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Figure 18. Summary of the data used to produce Figure 17
(The 856 programs in the DynGr dataset introduced in Sec-
tion 4.2). Full is the number of programs that did not contain
phantom nodes, i.e., fetched branches with untaken paths.

5 Related Work
The development of compilers requires benchmarks. Thus,
some of the most celebrated papers in programming lan-
guages describe benchmark suites, such as Spec CPU2006 [31],
MiBench [28], Rodinia [11], etc. These benchmarks are
manually curated, and typically comprise a small number of
programs. Recently, Cummins et al. [14] have demonstrated
that this reduced size fails to cover the space of program fea-
tures that a compiler is likely to explore during its lifetime.
Thus, researchers and enthusiasts have been working to gen-
erate a large number of diverse and expressive benchmarks.
This section covers some of these efforts.
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Random Synthesis. The generation of benchmarks for
tuning predictive compilers has been an active field of re-
search in the last ten years. Initial efforts directed to the
development of predictive optimizers would use synthetic
benchmarks conceived to find bugs in compilers. Examples of
such synthesizers include CSmith [52], LDRGen [4] and Or-
ange3 [39, 40]. Although conceived as test-case generators,
these tools have also been used to improve the quality of the
optimized code emitted by mainstream C compilers [5, 29].
However, more recent developments indicate that synthetic
codes tend to reflect poorly the behavior of human-written
programs; hence, yielding deficient training sets [18, 26].
Guided Synthesis. Several research groups have used guided
approaches to synthesize benchmarks [6, 12, 14, 20]. These
techniques might rely on a template of acceptable codes,
like Deniz and Sen [20] do, or might use a machine-learning
model to steer the generation of programs, like Cummins
et al. [14] or Berezov et al. [6] do. Synthesis is restricted to a
particular domain, like OpenCl kernels [14, 20]; or regular
loops [6]. The approach described in this paper is different
in the sense that the programs in Jotai are not synthesized;
rather, they are mined from open-source repositories.
Code Mining. This paper produces benchmarks out of code
from open-source repositories. We follow the methodol-
ogy introduced by da Silva et al. [18] to extract and recon-
struct programs, as Figure 1 illustrates. There exists a large
body of literature about scraping programs from reposito-
ries. Some of these works aim at generating benchmarks to
feed machine-learning models [23, 27]; however, to the best
of our knowledge, only da Silva et al. [18] and Armengol-
Estapé et al. [2] mine compilable programs to autotune com-
pilers. Nevertheless, open-source repositories are not the
only source of benchmarks. For instance, Richards et al. have
produced realistic JavaScript benchmarks, out of monitored
browser sections [44]. A shortcoming of Richards et al.’s
approach is scalability: a human being still needs to create a
browsing section that will give origin to one benchmark.
Generation of Executable Benchmarks.Many artificial
benchmarks execute [2, 6, 14, 47]. However, except for Bere-
zov et al. [6]—which generates specific-domain loops— these
collections follow CLDrive’s [14] approach to filter out
incorrect kernels. In the words of Tsimpourlas et al. [47]:
“[CLDrive] rejects kernels that (i) produce runtime errors [ob-

servable crashes]; (ii) do not modify any of the inputs (no

output) or (iii) modify them differently for each run (not de-

terministic)". Notice that this approach still leaves room for
undefined behavior. Indeed, all our attempts to run bench-
marks produced by Berezov et al. and Armengol-Estapé et al.
stumbled on undefined behaviors, which were reported (and
confirmed) by these researchers. These previous generators
also do not provide users with a way to explore the space of
valid inputs, like the DSL that we introduce in Section 3.2—
rather, the input generator is hardcoded into the synthesizer.
As an example, Cummins et al.’s CLDrive uses only one

approach to produce inputs, which is similar to the big-arr
constraint described in Section 4.2.

6 Conclusion
This paper has introduced Jotai: a set of principles, tech-
niques and tools to generate executable C benchmarks. Bench-
marks consist of compilable C files containing, each, an ex-
ecutable function mined from an open-source repository.
Compilation is achieved via type reconstruction. Sound ex-
ecution is achieved via constraints defined in a domain-
specific language to refine the type signature of functions.
Programs in Jotai can be used in a variety of ways: from
stress testing processors and compilers to autotuning com-
pilation tasks. Currently, Jotai programs are distributed as
part of a standalone repository, or as a CompilerGym dataset.
We are already aware of user stories outside our group. For
instance, Krister Walfridsson has used Jotai programs to
test PySmtGcc, a translation-validator for Gcc. In his words,
“it detected cases that were missing in PySmtGcc [48]."
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