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Abstract—Testing Electronic Design Automation (EDA) tools
hinges on the availability of benchmarks—programs written
in Hardware Description Languages (HDLs) like Verilog, Sys-
temVerilog, and VHDL. While benchmark collections exist, their
diversity remains limited. This limitation is increasingly problem-
atic given the growing demand for training large language models
in the EDA domain. In order to address this challenge, this paper
introduces enhancements in the variety of programs produced
by ChiGen, a tool for synthesizing realistic Verilog designs.
Originally developed to test Cadence Design Systems’ JasperTM

Formal Verification Platform, ChiGen has demonstrated its
capability to uncover zero-day bugs in tools such as Verible,
Verilator, and Yosys. This work expands ChiGen’s capabilities to
include SystemVerilog constructs such as classes, interfaces, and
packages, as well as formal verification primitives like assertions,
sequences, and properties. These additions significantly increase
both structural diversity and the semantic representativity of the
generated programs.

Index Terms—Verilog, Synthesis, Testing, Fuzzing.

I. INTRODUCTION

Fuzzing is an automated testing technique that generates
random, often unexpected, inputs to uncover bugs, vulner-
abilities, or unintended behaviors in software. Many Elec-
tronic Design Automation (EDA) tools, including YOSYS
[21], VERILATOR [14], MODELSIMTM [7], XceliumTM [5],
JASPERTM[4], can benefit from fuzzers capable of automati-
cally generating Verilog designs. Such tools enable early bug
discovery, performance optimization, compliance verification,
and general validation.

Existing open-source Verilog fuzzers, such as
VlogHammer[20], Verismith[10], and TransFuzz[15], follow
a top-down approach. They start with minimal valid Verilog
syntax and expand it using various techniques, ensuring
the generation of semantically valid designs. However, our
experience testing the Jasper Formal Verification Platform
reveals that this strict adherence to validity limits test case
diversity. Interestingly, semantically invalid Verilog designs
can be just as effective in identifying issues in EDA tools.
Additionally, these tools often generate constructs that differ
significantly from human-written Verilog, covering fewer than
40% of the production rules in the Verilog-2005 grammar
(IEEE 1364-2005), as described in section V.

This paper introduces enhancements in the quantity of

unique tokens and production rules to ChiGen1, a ”bottom-
up” Verilog fuzzer initially developed to test Cadence De-
sign Systems’ Jasper Formal Verification Platform and re-
leased as open-source in 2024. ChiGen generates Verilog de-
signs through a three-stage process: skeleton generation using
a probabilistic grammar, mock identifier replacement with
scope-compliant names and type inference using the Hindley-
Milner algorithm. Our current work significantly enhances
ChiGen’s capabilities by expanding its token set and produc-
tion rules to include modern SystemVerilog constructs like
classes, interfaces, and packages, as well as formal verification
primitives such as assertions.

Our experiments demonstrate that ChiGen outperforms top-
down fuzzers like Verismith, VlogHammer, and TransFuzz
in terms of structural diversity and bug-finding effectiveness.
Since its release, ChiGen has identified at least five confirmed
issues in prominent open-source EDA tools such as Yosys,
Icarus Verilog [19], and Verible [6].

II. RELATED WORK

This paper presents techniques for building Verilog fuzzers,
with a specific focus on enhancing the variety of generated
designs. Several other Verilog fuzzers are available as open-
source tools [10], [15], [20]. Unlike our approach, these tools
primarily expand a core set of Verilog syntax incrementally,
ensuring each expansion results in a valid design. In contrast,
ChiGen’s probabilistic grammar approach enables the genera-
tion of a richer variety of tokens while maintaining syntactic
correctness. During the development of ChiGen, we engaged
with the authors of Verismith, gaining valuable insights into
differing methodologies.

In the past two years, the emergence of large language
models (LLMs) has introduced new methods for Verilog code
generation [8], [12], [17], [18]. While ChiGen is not an
LLM, it offers unique advantages by focusing on probabilistic
grammar-based generation. Unlike LLMs, which aim to shape
code toward specific semantics, ChiGen prioritizes diversity in
generated tokens and production rules. Specifically, it models
the probabilities of production rules as k-grams, allowing for
more comprehensive exploration of Verilog’s syntax space
without assigning probabilities to token sequences directly.

1Available at https://github.com/lac-dcc/chimera



ChiGen’s enhanced token generation capability makes it
well-suited for creating diverse Verilog benchmarks. However,
it differs from existing benchmark collections [1], [2], [3],
[11], [13], [16], which are static and limited to a predefined
set of designs. Unlike these immutable collections, ChiGen
dynamically generates new benchmarks, integrating them into
its library of Verilog programs. This dynamic approach not
only broadens the scope of available designs but also ensures
that benchmarks can adapt to new requirements, enriching the
testing landscape for hardware tools and methodologies.

III. CHIGEN OVERVIEW

ChiGen is a stochastic tool for generating random Verilog
programs, designed to diversify the input space for testing
Electronic Design Automation (EDA) software. A high-level
overview of ChiGen is shown in Figure 1. The tool takes as
input the JSON grammar derived from ChiBench programs,
randomly selects grammar rules based on predefined probabil-
ities, and generates a Verilog program as output. At its core,
ChiGen operates in three distinct phases, each contributing to
its robust program generation process. The following sections
provide a detailed explanation of these phases.

A. Syntax Generation via Probabilistic Grammars

The core of ChiGen’s functionality lies in its use of n-gram
language models to guide the synthesis of Verilog programs.
These models require a comprehensive corpus of Verilog
programs to estimate the probabilities of various language
constructs, such as module declarations, always blocks, and
specific operators. For this purpose, we leverage ChiBench
[16], a collection of Verilog programs meticulously mined
from diverse open-source repositories, serving as our primary
training dataset.

To extract the production rules and their frequencies from
ChiBench, we utilize Verible’s parser. Verible, an open-source
Verilog parsing and linting tool, provides a detailed trace of
the production rules it applies during the parsing process. By
analyzing these traces across the entire ChiBench corpus, we
can count the occurrences of each grammar rule. Crucially, we
model the probabilities of these production rules as k-grams,
meaning the probability of a rule being selected depends on
the context of the k preceding rules. This approach allows for a
more nuanced and realistic generation of syntax, as it captures
common structural patterns and dependencies found in human-
written Verilog. This differs significantly from approaches that
assign probabilities to token sequences directly, which can lead
to less structurally coherent designs.

The collected rules and their observed frequencies, condi-
tioned on their k-gram context, are then compiled into a JSON
file. This file effectively serves as ChiGen’s ”probabilistic
grammar.” During the program generation phase, ChiGen
reads this JSON file. Starting from a root production rule
(e.g., ”source text”), ChiGen iteratively expands non-terminal
symbols by randomly selecting a production rule from the
available options, weighted by their probabilities defined in
the JSON grammar and conditioned on the k preceding rules

Fig. 1. ChiGen overview

in the partial syntax tree. This stochastic process ensures high
variability in the generated syntax trees while maintaining a
statistically representative structure based on the ChiBench
corpus. The result is a syntactic skeleton of a Verilog program,
ready for subsequent refinement.

In order to obtain the production rules of a program, we
used Verible’s parser. This is possible by using the trace of
Verible’s parser, which outputs production rules in the order
in which they are processed. Then, we can count how many
times each rule appear given the context of n preceeding rules.
These rules and the frequency of each of rule is then stored
in a JSON file. Once the probabilities of each construct are
established in a JSON file, ChiGen synthesizes programs by
assembling syntax trees guided by the language model.

B. Variable Renaming and Scope Creation

Following the initial syntax generation phase, the abstract
syntax trees (ASTs) produced by ChiGen contain generic
placeholders. These placeholders mark locations where spe-
cific, unique, and contextually appropriate identifiers—such
as variable names, module names, port names, or instance
names—are required. Proper management of these identifiers
and their visibility within defined scopes is critical for gener-
ating syntactically valid and semantically meaningful Verilog
and SystemVerilog programs. Incorrect naming conventions or
improper scope resolution can lead to compilation errors, un-
intended behavioral ambiguities, or even crashes in Electronic
Design Automation (EDA) tools.

In this second core phase of ChiGen’s code generation, a
dedicated scope management engine, which we refer to as
the ”scope delimiter,” performs a comprehensive traversal of
the generated syntactic skeleton. This traversal is typically
executed in a depth-first manner, allowing the engine to metic-
ulously identify, enter, and exit various scope regions defined
by the Verilog and SystemVerilog grammar. These regions are
fundamental to the language’s structure and include, but are
not limited to, module declarations, function and task



bodies, always blocks, fork-join blocks, begin-end
blocks, class definitions, and package declarations.

The ”scope delimiter” meticulously maintains a dynamic
symbol table, which is conceptually structured as a stack of
hash maps. Each map within this stack represents the set
of in-scope elements (i.e., declared identifiers) for the
current lexical context. As the tree traversal proceeds, the
variable renaming process operates through three precise and
interconnected steps:

1) Declaration Renaming and Entry into Scope: When
the scope delimiter encounters a placeholder repre-
senting the declaration of a new identifier (e.g., a
wire, reg, logic, parameter, or a new class/module
name), it triggers the generation of a new, unique
symbol. These symbols are systematically generated
(e.g., id_0, id_1 for variables, module_0 for mod-
ules, instance_0 for instances) to ensure global
uniqueness within the generated program. This newly
minted identifier, denoted as s, then replaces the generic
placeholder in the Abstract Syntax Tree (AST), and
s is immediately inserted into the symbol table that
corresponds to the currently active scope. This step
guarantees that every declared entity receives a distinct
and resolvable name within its defined visibility.

// Before renaming (fragment of AST):
logic GenericIdentifier;
module GenericIdentifier (GenericIdentifier,

GenericIdentifier);

// After declaration renaming (illustrative
transformation):

logic id_0; // ’id_0’ is a newly generated
unique name

module module_1 (id_1, id_2); // ’module_1’,
’id_1’, ’id_2’ are new unique names

2) Usage Resolution and Replacement: As the traversal
continues into the body of the generated code, the
scope delimiter encounters placeholders that represent
uses or references to previously declared identifiers.
At each such instance, it randomly selects an already-
declared symbol from the set of currently active
in-scope elements. This selection is performed
from all visible scopes, prioritizing the innermost scope
to simulate standard HDL name resolution rules (e.g.,
local variables shadow global ones). The placeholder
in the AST is then replaced with the chosen symbol.
The inherent probabilistic nature of this selection in-
troduces significant syntactic and semantic variety in
how variables are referenced, which is exceptionally
valuable for fuzzing. This controlled randomness can
generate unusual, yet syntactically valid, connections
and expressions that effectively challenge the parsing,
elaboration, and semantic analysis capabilities of EDA
tools.

3) Scope Exit and Cleanup: Upon the completion
of processing a scope region (e.g., encountering an
endmodule, endfunction, or end keyword), the

scope delimiter executes a critical cleanup step. It re-
moves from the set of in-scope elements all variables,
parameters, and other identifiers that were declared
specifically within that region. Conceptually, this opera-
tion corresponds to popping the current scope’s symbol
table off the stack. This mechanism rigorously adheres to
the lexical scoping rules of Verilog and SystemVerilog,
preventing erroneous references to identifiers that are
no longer in scope and ensuring that names are only
visible where they are legally declared. This rigorous
cleanup prevents accidental cross-scope references and
helps maintain the integrity of the generated design.

This variable renaming and scope creation phase is es-
sential to ChiGen’s ability to produce high-quality, diverse,
and syntactically correct Verilog and SystemVerilog programs.
By dynamically managing identifier uniqueness and visibility
throughout the generation process, it ensures that the re-
sulting designs are parsable and elaboratable by EDA tools.
This enables effective and targeted testing of critical EDA
functionalities such as symbol resolution, name binding, and
hierarchical elaboration. Failures in these aspects of EDA
tools, manifesting as name conflicts, unresolved references, or
unexpected shadowing behavior, are common sources of bugs
and can be effectively uncovered by the controlled randomness
and strict adherence to scoping rules introduced during this
phase.

IV. SYSTEMVERILOG AND FORMAL CONSTRUCTS

The overarching objective of this work is to significantly
enhance the diversity and realism of the Verilog and Sys-
temVerilog designs generated by ChiGen. This is achieved
by strategically expanding the set of tokens and production
rules that ChiGen’s probabilistic grammar can utilize, thereby
better reflecting the constructs found in real-world hardware
designs. Accomplishing this goal involves a multifaceted ap-
proach, centered on three core tasks: systematically identify-
ing absent or under-represented tokens and production rules
within ChiGen’s current generation capabilities, meticulously
incorporating these missing constructions into its grammar
and generation logic, and diligently correcting any erroneous
programs that might arise from initial implementations of new
features.

Beyond simply increasing linguistic coverage, a crucial
enhancement for ChiGen is the introduction of formal verifica-
tion constructs. These include SystemVerilog assert, property,
and sequence blocks. For instance, ChiGen can now generate
assertions such as:

assert property (@(*) id_1 == id_2);

The inclusion of these elements is vital for two primary
reasons: first, they dramatically increase the language cover-
age, moving ChiGen beyond basic Verilog-2005 to encom-
pass more modern and complex design patterns. Second,
and perhaps more critically, they enable the generation of
sophisticated test cases specifically designed to probe and
challenge the formal engines of Electronic Design Automation



(EDA) tools. This allows for more targeted and effective
fuzzing campaigns against formal verification platforms,

A. Addition of packages

Packages in SystemVerilog serve as containers for sharing
declarations (e.g., parameters, types, functions, tasks, classes)
across multiple modules or interfaces without global scope
pollution. In ChiGen, modules are generated iteratively until
a specified program size or complexity threshold is met. To
integrate packages, the generation process was augmented:
instead of exclusively generating module declarations, ChiGen
now probabilistically decides whether to generate a module,
package, or interface as a top-level construct.

The process for assigning unique names to generated pack-
ages mirrors that used for modules. After all primary struc-
tural units (modules, packages, interfaces) are generated, a
systematic renaming pass ensures unique identifiers, typically
following a pattern like module 1, module 2, package 1,
interface 1, and so on. This ensures clarity and avoids name
collisions within the generated design. Critically, ChiGen’s
scope management system was updated to understand pack-
age scopes, allowing declarations within a package to be
correctly referenced (package_name::item_name) by
other generated constructs that import or explicitly reference
the package.

SystemVerilog interfaces abstract communication between
design blocks, simplifying port declarations and promoting
reusable verification environments. Similar to packages, in-
terfaces are now part of ChiGen’s top-level generation op-
tions. ChiGen generates interface declarations, including their
modports (module ports) and interface variables. The type
inference engine (Section 3.3) was extended to correctly
deduce and propagate interface types when instances of these
interfaces are declared within modules, ensuring that the
connections adhere to SystemVerilog’s strict typing rules. This
enables ChiGen to produce designs that utilize more modern
and complex interconnection patterns, challenging EDA tools
to correctly parse and elaborate such hierarchical structures.

Packages can also be imported according to the Verilog
grammar. For instance, below there is a program which
produces a package and imports it:

package package_0;
typedef logic id_1;

endpackage
package package_1;
typedef logic id_2;
import package_0::*;

endpackage

B. Addition of Assertions

Formal verification is an indispensable phase in modern
hardware design, heavily relying on the precise specification
of design behavior through constructs like assertions and
properties. ChiGen’s enhanced capability to generate these
formal constructs significantly bolsters its utility for rigorous
testing of formal verification engines within Electronic Design
Automation (EDA) tools. By integrating the generation of

SystemVerilog Assertions (SVAs), ChiGen can now produce
highly specific and semantically rich test cases that probe the
deepest layers of formal analysis.

1) Assertion Generation Strategy: ChiGen employs a so-
phisticated, heuristic-based approach to strategically insert
assert statements into the generated Verilog/SystemVerilog
code. This strategy is designed to create assertions that are con-
textually relevant to the surrounding design logic. A common
and robust pattern in hardware description languages is the
assignment of a value to a variable, which typically represents
a data path, a control signal, or an intermediate computation.
ChiGen intelligently identifies locations within the Abstract
Syntax Tree (AST) where such assignment statements occur,
for instance:

assign id_1 = id_2;

Immediately following the identification of such an assign-
ment within the AST, ChiGen probabilistically determines
whether to insert a corresponding concurrent assertion. The
simplest and most fundamental form of this generated asser-
tion checks for an equality condition:

assign id_1 = id_2;
assert property (@(*) id_1 == id_2);

This specific assertion, triggered by the @(*) event sensi-
tivity list, validates that id 1 holds the exact value of id 2 at
every point in time when either id 1 or id 2 changes. Such an
assertion is invaluable for detecting unexpected value propaga-
tions, subtle functional discrepancies, or unintended temporal
shifts in data. Its simplicity makes it a robust candidate for
automated generation, yet its failure can indicate critical bugs
in formal analysis tools or design elaboration.

The power of this dynamic assertion generation extends be-
yond simple variable-to-variable assignments. ChiGen’s mech-
anism is designed to handle more complex right-hand side
expressions. If the assignment involves an arithmetic, logical,
or bitwise expression, the generated assertion will accurately
reflect that expression, directly testing the equivalence:

assign id_1 = 1 + 2;
assert property (@(*) id_1 == 1 + 2);

This approach ensures that the generated assertions are not
merely syntactically correct but also semantically tied to the
surrounding design logic. This contextual relevance signifi-
cantly increases their efficacy in identifying meaningful issues
within formal verification tools, as they represent realistic
verification challenges. This dynamic generation of assertions
based on existing code patterns is a key strength, ensuring
that the assertions are semantically related to the generated
design logic, which consequently increases their relevance and
effectiveness for formal verification. While ChiGen currently
focuses on these assignment-driven assertions, future work
could explore more sophisticated assertion patterns, including
those involving more complex temporal operators to capture
intricate design behaviors.



2) Expanded Assertion Coverage: Beyond these immedi-
ate, context-driven assertions, ChiGen also supports the gen-
eration of more elaborate assert property statements that can
incorporate temporal aspects, even without explicitly defined
property or sequence blocks. These assertions can directly
embed temporal expressions to specify complex behavioral
checks over time. This capability broadens the spectrum of
formal verification scenarios that ChiGen can generate, mov-
ing beyond simple combinatorial checks to include sequential
behaviors. For example, ChiGen can produce an assertion with
a specific clocking event and a condition that must hold true:

BLOCK_0 :
assert property (id_1) @(negedge id_5);

C. Addition of classes

The introduction of classes in SystemVerilog significantly
extended its capabilities for object-oriented programming
(OOP), enabling higher-level abstraction and testbench devel-
opment. ChiGen now incorporates the generation of class dec-
larations and associated constructs, primarily focusing on static
members which can be accessed without object instantiation,
making them more amenable to automated generation within
a fuzzer context.

1) Generation of Class Declarations: ChiGen’s grammar
was updated to include production rules for class declara-
tions, including member variables (logic, int, etc.), methods
(function, task), and class-specific keywords (static, local, pro-
tected). This allows ChiGen to create diverse class definitions,
reflecting various class structures found in SystemVerilog.

2) Addition of calls to functions of classses: A key en-
hancement is ChiGen’s ability to generate calls to static
functions declared within a class. Static functions, unlike
regular member functions, belong to the class itself rather than
an instance of the class, allowing them to be called directly
using the scope resolution operator (::).

ChiGen’s generation process includes a phase where it
traverses the partially built syntax tree. If a class definition
containing a static function is found, ChiGen will probabilis-
tically insert a call to this function in an appropriate context,
such as within an always block or a task/function. The program
below illustrates this concept:

class id_1;
static function logic id_2(id_3);

id_3 <= 1;
endfunction

endclass

always @* id_1::id_2(id_3); // Call to static
function

This capability challenges EDA tools’ parsers and elab-
orators to correctly resolve static method calls and their
arguments. While ChiGen currently prioritizes static function
calls for their simpler integration, future developments could
explore the generation of class instances, constructors, and
calls to non-static methods, which would require more com-
plex object lifecycle management within the fuzzer.

V. EVALUATION

This section evaluates ChiGen’s performance in addressing
four key research questions:

• RQ1: How diverse are the designs generated by ChiGen?
• RQ2: What types of bugs can be uncovered using

ChiGen-enabled fuzzing?
• RQ3: How the different techniques listed in Section III

increase the diversity of Verilog designs?
a) Baselines: To train ChiGen’s probabilistic grammar,

we used 10,000 Verilog designs from the ChiBench collection
[16]. The performance of ChiGen is then compared with other
fuzzer collections, including Verismith [10], TransFuzz [15],
and VlogHammer [20]. Note that VlogHammer generates a
fixed set of 3,000 designs, which limits its scope of evaluation.

A. RQ1: Diversity

1) Syntactical Diversity: We evaluated the syntactical di-
versity of ChiGen-generated designs by analyzing the number
of unique production rules in the Verible grammar required to
parse these designs. The Verible grammar includes 456 distinct
production rules.

a) Results: Figure 3 shows the syntactical diversity for
populations of varying sizes. Unique production rules are
counted only once, regardless of their frequency in the designs.
As the number of generated designs increases, the diversity
approaches that of ChiBench, which uses 406 unique rules
for 10,000 designs. In comparison, Verismith exercises 179
rules, TransFuzz uses 151, and VlogHammer, limited to 3,000
designs, employs only 137 rules.

Fig. 2. Syntactical diversity of ChiGen designs, measures as the number of
unique production rules in the Verilog grammar exercised when parsing a
population of generated files.

ChiGen’s performance varies slightly with the size of the
probabilistic context K: for K = 1, 2, 3, 4, 5, 6, the number
of unique rules exercised are 336, 355, 364, 374, and 377,
respectively for 1-gram.

The results for unique token diversity parallel the posi-
tive trends observed for production rules. While a ”reduced
ChiBench” dataset (a specific subset of the full ChiBench
corpus tailored for this particular token analysis) contains 246



Fig. 3. Syntactical diversity of ChiGen designs, measures as the number of
unique tokens in the Verilog grammar exercised when parsing a population
of generated files.

unique tokens, ChiGen successfully generated designs exer-
cising 202 unique tokens. This was observed with populations
of 214 (16,384) designs, specifically when generated using a
1-gram probabilistic context (i.e., K = 1). This demonstrates
that ChiGen produces designs with a substantial variety of
lexical elements, ensuring comprehensive testing of the scan-
ner and parser components within EDA toolchains. The ability
to generate such a high number of unique tokens, even with
a basic 1-gram context, underscores ChiGen’s foundational
strength in producing rich and varied HDL code at the most
granular level.

In conclusion, ChiGen’s superior syntactical diversity, as
evidenced by its extensive coverage of both production rules
and unique tokens, is a direct consequence of its innovative
bottom-up, probabilistic grammar approach. This broad and
deep coverage is critical for effective fuzzing, as it enables the
generation of highly varied and often unconventional test cases
that are significantly more likely to uncover subtle, unforeseen
bugs and vulnerabilities in EDA tools, thereby improving their
overall robustness and reliability in handling the vast landscape
of Verilog and SystemVerilog designs.

B. RQ2: Bug Detection

ChiGen was specifically designed to uncover bugs in the
Jasper Formal Verification Platform and has been integrated
into Cadence Design Systems’ development methodology. Due
to confidentiality agreements, the effectiveness data related to
this integration cannot be disclosed.

To demonstrate ChiGen’s bug-finding capabilities, we con-
ducted extensive campaigns targeting three open-source EDA
tools: Verible (v0.0-3808), Yosys (v0.45), and Verilator (Re-
lease 159). In each campaign, 3,000 designs were gener-
ated—500 for each production context—and submitted to the
respective tools. The compiled designs were analyzed, and any
crashes or failed assertions were flagged as issues.

a) Results: The bug-finding campaigns revealed several
issues across the tested EDA tools. The following table sum-
marizes the identified issues:

TABLE I
SUMMARY OF ISSUES IDENTIFIED IN EDA TOOLS

Issue Tool Description
2181 Verible Crashes instead of reporting syntax errors related to instantiation type.
2189 Verible Crashes with syntactically valid input.
2233 Verible Incorrectly accepts Verilog code with mismatched program and

endmodule keywords.
1174 Icarus Verilog Crashes when assigning to parameters in a procedural block.
4598 Yosys Crashes while simplifying program.

These findings highlight key weaknesses in the tested
EDA tools. Specifically, Verible experienced several crashes,
including one related to instantiation type errors, another
with valid syntax, and a third with mismatched program
and endmodule keywords. Additionally, Icarus Verilog and
Yosys encountered crashes in scenarios involving parameter
assignments and program simplifications, respectively. These
results demonstrate ChiGen’s effectiveness in identifying crit-
ical issues that affect the stability and reliability of EDA tools.

C. RQ3: Evolution

In this section, we examine the evolution of ChiGen by di-
viding it into three distinct versions, each marking a significant
step in its development and capabilities.

In this section, we discuss the development trajectory of
ChiGen, presenting its evolution through different versions.
This chronological analysis highlights the systematic improve-
ments implemented to broaden the diversity of generated
designs and to incorporate more advanced Verilog and Sys-
temVerilog constructs. Each version represents a significant
milestone, marked by specific enhancements that collectively
contribute to ChiGen’s current robust state as a sophisticated
fuzzer for EDA tools.

Figure 4 visually encapsulates this progression, illustrat-
ing how each iteration has incrementally contributed to the
increased diversity and complexity of the generated outputs,
as measured by the number of unique tokens and production
rules exercised. Our analysis is based on consistent samples
of 10,000 programs generated for each version, providing a
reliable basis for comparison.

We delineate ChiGen’s evolution through several key ver-
sions:

Initial Baseline (Pre-Version 22): This period represents
ChiGen’s state when this paper started, prior to the major
enhancements detailed in this paper. It served as the initial
point for measuring token and production rule coverage,
primarily focusing on core Verilog constructs. Although ca-
pable of generating diverse designs, its coverage of modern
SystemVerilog features and formal constructs was limited.

Version 22: Introduction of Packages and Minor Fixes.
Version 22 marks the beginning of the significant enhance-
ments detailed in this monograph. The primary focus of
this iteration was the integration of SystemVerilog package
constructs. As discussed in Section IV, packages provide a
crucial mechanism for sharing common declarations in Sys-
temVerilog. Their addition required modifications to ChiGen’s
grammar and its scope management system to correctly han-
dle package declarations and their usage. This version also

https://github.com/chipsalliance/verible/issues/2181
https://github.com/chipsalliance/verible/blob/master/verilog/parser/verilog.y
https://github.com/chipsalliance/verible/issues/2189
https://github.com/chipsalliance/verible/blob/master/verilog/tools/formatter/README.md
https://github.com/chipsalliance/verible/issues/2233
https://github.com/chipsalliance/verible/blob/master/verilog/parser/verilog.y
https://github.com/steveicarus/iverilog/issues/1174
https://github.com/steveicarus/iverilog
https://github.com/YosysHQ/yosys/issues/4598
https://github.com/YosysHQ/yosys


incorporated several minor bug fixes that addressed previously
identified syntactic inaccuracies in the generated programs.
The impact of these changes was a noticeable expansion in
the types of structural organization ChiGen could produce,
laying the groundwork for more complex designs.

Version 23: Initial Integration of Classes. A major under-
taking in Version 23 was the initial introduction of SystemVer-
ilog class constructs. This was a significant step towards
enabling the generation of more complex, object-oriented
test cases. However, the initial integration of classes proved
to be particularly challenging. The complexities associated
with class syntax, scope rules, and type interactions led to
a dramatic decrease in the percentage of syntactically valid
designs. This phenomenon is a common characteristic during
the integration of highly complex language features into fuzzer
grammars, as subtle interactions can lead to widespread pars-
ing errors if not meticulously handled. Although groundbreak-
ing in its scope, this version highlighted the need for rigorous
error correction and refinement in subsequent iterations.

Version 24: Major Syntax Error Resolution and Stability
Improvement. Version 24 was primarily dedicated to address-
ing the major syntax errors caused by the initial addition
of classes in Version 23. This involved a thorough review
of the newly added class-related production rules, refinement
of their probabilities, and significant debugging of the type
inference and variable renaming phases to correctly handle
class-specific contexts. The concerted effort in this version
led to a substantial increase in the number of valid designs,
indicating a greater maturity in ChiGen’s ability to produce
well-formed SystemVerilog code that incorporates classes.
This improvement was crucial for ensuring that a higher
proportion of generated programs could be successfully parsed
and processed by EDA tools, thus increasing the efficiency of
bug detection campaigns.

Version 25: Addition of Static Class Method Calls
and Further Refinements (Current Version). The most
recent iteration, Version 25, represents the current state of
ChiGen. A key enhancement in this version was the specific
integration of calls to static functions within classes. While
this feature significantly expanded the functional coverage of
SystemVerilog classes, its intricate nature, particularly con-
cerning argument passing and return types, caused a slight,
albeit manageable, decrease in the immediate percentage of
perfectly valid designs. This transient reduction reflects the
ongoing challenge of integrating advanced language features
into a stochastic fuzzer while maintaining high levels of
syntactic correctness. However, the benefit of generating more
realistic and challenging test cases for EDA tools, especially
those related to static class member resolution and formal
verification, far outweighs this minor fluctuation. This version
also includes continued minor refinements to existing grammar
rules and probabilistic models based on ongoing feedback and
further analysis of the ChiBench corpus.

The data presented in Figure 4 visually reinforce this
narrative. The progression illustrates a consistent effort to
expand the breadth of ChiGen’s output, steadily increasing the

Fig. 4. Evolution of the number of tokens and productions.

total number of unique tokens and production rules generated.
This measured and iterative approach to development allows
ChiGen to progressively cover more of the Verilog and Sys-
temVerilog language, ensuring that it remains a cutting-edge
tool for rigorous EDA tool testing.

VI. FUTURE WORK

Despite ChiGen’s significant achievements in generating
diverse and effective Verilog and SystemVerilog designs for
testing Electronic Design Automation (EDA) tools, several
key areas remain open for further exploration and potential
enhancement. Notably, unlike some fuzzers such as Verismith
[9], which prioritize the generation of 100% syntactically and
semantically correct designs, ChiGen’s current probabilistic,
bottom-up approach means it does not consistently produce
entirely correct programs. This inherent trade-off, which con-
tributes to ChiGen’s ability to expose obscure bugs, also points
to specific directions where its capabilities could be expanded
by subsequent research.

One primary area for future investigation involves refining
ChiGen’s generation mechanisms to potentially increase the
rate of syntactically and semantically correct outputs without
unduly sacrificing the structural diversity that is its hallmark.
This might entail more sophisticated post-generation validation
and correction passes, or deeper integration of semantic checks
during the generation process itself, to preemptively avoid
certain classes of errors. Achieving higher correctness rates



could broaden ChiGen’s applicability, particularly for EDA
tools that are less tolerant of malformed inputs or require
consistently valid designs for advanced analysis.

Beyond merely improving correctness, a wealth of Sys-
temVerilog features remain to be explored for integration
into ChiGen’s generation framework. For instance, concerning
SystemVerilog classes, the current implementation primarily
focuses on static members and basic class structures. Future
work could implement the generation of non-static class fields,
enabling object instantiation with constructors (new), and the
modeling of basic inheritance. Such additions would allow
ChiGen to create more complex object-oriented test environ-
ments, which are increasingly vital in modern verification
methodologies.

Similarly, within the domain of formal verification, while
ChiGen effectively generates assert property statements, the
comprehensive generation of named property and sequence
blocks, along with their varied instantiations, represents a
significant unaddressed area. The framework is also capa-
ble of incorporating the generation of covergroup and
coverpoint constructs for functional coverage, which
would enhance its utility for testing coverage analysis tools.
Furthermore, exploring the generation of designs that leverage
SystemVerilog’s interface and modport features for more real-
istic inter-module communication presents another opportunity
to deepen its language coverage.

Another potential direction for future development involves
investigating mechanisms for more targeted design generation.
Although ChiGen’s stochastic nature excels at exploring the
design space broadly, subsequent research could explore ways
to guide the generator to produce designs with specific char-
acteristics, such as a minimum number of modules, specific
class types, or a particular density of assertions. This added
control would facilitate more focused testing campaigns for
particular tool features or verification methodologies.

By addressing these challenges and expanding its linguistic
breadth, ChiGen’s framework offers a robust foundation for
continued development, promising further insights into the
stability and robustness of next-generation EDA tools.

VII. CONCLUSION

This paper presented significant advancements to ChiGen,
a ”bottom-up” Verilog fuzzer, through the expansion of its
token set and improvements in program correctness. ChiGen
generates Verilog designs by constructing a syntactic skeleton,
inferring names and types, and injecting additional constructs
using a probabilistic grammar and the Hindley-Milner type
inference. Although these techniques are well-established in-
dividually, their integration within ChiGen represents a unique
approach to Verilog fuzzing.

A key design philosophy of ChiGen is balancing valid and
invalid program generation, with approximately 70% of its
outputs being valid Verilog designs. This deliberate inclusion
of semantically and syntactically invalid programs has proven
effective in uncovering zero-day bugs in several EDA tools,
as highlighted in Section III. The addition of new tokens to

ChiGen has further enhanced its ability to generate structurally
diverse and realistic Verilog programs, making it a more
powerful tool for testing EDA tools.

The addition of SystemVerilog and formal verification con-
structs increases the relevance of ChiGen for modern hardware
development workflows, positioning it as a comprehensive
benchmark generator for structural and formal EDA testing.
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