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Abstract—This work evaluates predictive modeling approaches
for key geometallurgical variables — metallurgical recovery
(rec) and Bond Work Index (BWI) — using geochemical and
mineralogical data from a mineral deposit. Three strategies
are compared: a global model using the XGBoost Regressor
trained on the entire dataset, and two segmented approaches
with local models trained separately on clusters defined by K-
means and spatially-constrained Agglomerative Clustering. The
results show that the segmented models consistently outperform
the global model, with substantial improvements in the coefficient
of determination (R?), as well as reductions in mean absolute
error (MAE) and root mean square error (RMSE). The model
based on Agglomerative Clustering achieved the best overall per-
formance for both target variables, highlighting the contribution
of spatial segmentation to capturing local patterns and enhancing
predictive accuracy in geometallurgical modeling. These findings
reinforce the importance of accounting for spatial heterogeneity
in predictive modeling of mineral deposits.
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I. INTRODUCAO

A previsdo precisa de varidveis geometalirgicas ¢ um com-
ponente essencial no planejamento e na tomada de decisdes em
projetos de mineracao. Em especial, a recuperagcdo metaltirgica
(REC) e o Bond Work Index (BWI) impactam diretamente a
eficiéncia do processo de beneficiamento mineral e os custos
operacionais [1], [2].

A recuperacdo metaliirgica representa a propor¢ao do metal
de interesse presente no minério bruto que pode ser efeti-
vamente recuperada durante o processamento. Essa métrica
¢ fundamental para estimar o retorno econdmico de uma
jazida, uma vez que perdas metalirgicas podem comprometer
significativamente a rentabilidade da operagdo. Além disso,
podem ocorrer grandes perdas ao processar um material
inadequado as condi¢des de planta, seja por limitacdes no
tempo de residéncia, escolha de reagentes ou outras varidveis
operacionais. A variabilidade da recuperacdo estd associada a
composicdo mineralégica do minério, a presenca de minerais
de ganga (componentes sem valor do minério), as condi¢des
de processo e a natureza das associagcdes entre 0s minerais
valiosos e os minerais hospedeiros [3], [4].

Ja o BWI é um indicador da moabilidade do minério,
ou seja, da energia necessdria para reduzir o tamanho das
particulas até uma granulometria adequada para o beneficia-
mento. Esse indice, expresso em kWh/t, influencia diretamente
o dimensionamento e o consumo energético dos moinhos
utilizados nas etapas de cominui¢do (britagem e moagem).
Materiais com altos valores de BWI exigem maior energia para
serem moidos, impactando os custos energéticos da planta [2].

A estimativa antecipada dessas varidveis para blocos geor-
referenciados do modelo de recursos permite:

« Realizar simulagdes realistas de desempenho da planta de

beneficiamento;

e Otimizar a mistura de minérios (blending) para maxi-

mizar a recuperagdo e reduzir custos energéticos;

o Apoiar decisdes de investimento em tecnologias de pro-

cessamento.
Neste contexto, a aplicacdo de técnicas de aprendizado
de maquina para prever REC e BWI com base em dados
geoquimicos, mineralégicos e geoldgicos representa uma es-
tratégia promissora para integrar conhecimento técnico com
tomada de decisdes baseadas em dados [5].
Dessa forma, este trabalho tem como objetivos:
o Aplicar e comparar técnicas de clusterizacdo multivariada
em dados geometaltirgicos [4], [6];

o Avaliar a coeréncia estatistica e espacial das segmen-
tacdes obtidas [3], [7];

o Implementar modelos preditivos para REC e BWI,
avaliando o impacto da segmentacdo geometaltirgica so-
bre a acurdcia das previsoes.

II. REFERENCIAL TEORICO
A. Clusterizagdo Multivariada
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A andlise de clusters € uma técnica de aprendizado nao
supervisionado amplamente utilizada para segmentar dados
com base em suas similaridades internas. Um dos algoritmos
mais tradicionais é o K-means, que busca minimizar a soma
das distancias quadradas intra-cluster, assumindo que os gru-
pos formados sdo aproximadamente esféricos e de tamanho
semelhante.

Apesar de sua eficiéncia, o K-means considera apenas o
espaco estatistico das varidveis, desconsiderando a localiza-
¢do espacial dos dados. Em aplicacdes geocientificas, essa



limitagdo pode comprometer a validade dos agrupamentos,
gerando dominios artificialmente fragmentados e pouco con-
dizentes com a geologia do depdsito [4], [6].

Para contornar esse problema, diversas abordagens passaram
a integrar informagdes espaciais ao processo de clusterizacao.
Técnicas como o agrupamento hierdrquico geoestatistico e
os métodos com restricdo de conectividade espacial buscam
preservar a continuidade dos agrupamentos no espaco fisico,
produzindo segmentagcdes mais coerentes com a realidade
geoldgica [3], [6].

B. Geometalurgia e Variabilidade Espacial

Na mineragdo, a definicdo de dominios geolégicos ou ge-
ometaldrgicos € uma das etapas mais criticas da modelagem
de recursos minerais. Dominios mal definidos podem levar a
mistura de populagdes geoquimicas distintas, comprometendo
a acurdcia das estimativas de teor e a eficdcia das decisdes de
lavra e beneficiamento [1], [4].

A geometalurgia busca justamente integrar informacdes
mineraldgicas, geoquimicas e espaciais para aprimorar esse
processo, fornecendo uma visdo mais holistica do depdsito.
Quando bem definidos, os dominios geometaltirgicos per-
mitem estimativas mais robustas, favorecem estratégias de
planejamento seletivo e viabilizam modelagens locais por re-
gressdo — prética cada vez mais adotada na indudstria mineral
(1], [2].

Nesse contexto, compreender a estrutura espacial das
varidveis envolvidas é essencial. Propriedades como a recu-
peracdo metaldrgica (REC) e o indice de moabilidade (BWI)
tendem a apresentar padrdes de continuidade no espaco, re-
fletindo os processos geoldgicos que originaram o depdsito. A
verificagdo dessa dependéncia espacial auxilia na escolha de
técnicas mais adequadas de segmentacdo, como os métodos
de clusterizacdo com restricdes geograficas.

Uma das métricas mais utilizadas para quantificar essa
dependéncia é o Indice de Moran (I), que mede o grau
de autocorrelacdo espacial de um atributo. Ele compara a
similaridade entre valores observados em locais préximos com
a variancia global da varidvel. Sua férmula geral é:

o Dt 2 Wi (2 — T)(25 — T)
w > iy (i — 7)?

onde:

« n é o nimero total de observagdes;

e I; € xj sdo os valores da varidvel nos locais 7 e j;

e T é a média da variavel;

e w;; € 0 peso que expressa a proximidade espacial entre
os locais 7 e j (geralmente baseado na distancia ou
vizinhanga);

o« W=3>wi éasoma total dos pesos.

Valores positivos de [ indicam autocorrelacdo positiva
(valores semelhantes préximos entre si), enquanto valores
negativos sugerem dispersdo espacial. Um valor préximo de
zero indica auséncia de estrutura espacial. A aplicacdo do
Indice de Moran &, portanto, uma etapa importante para validar

a pertinéncia do uso de métodos que levem em conta a local-
izacdo geogrifica no processo de segmentacdo geometaltirgica.

C. M¢étricas de Avaliagcdo de Agrupamentos

A avaliacdo da qualidade dos agrupamentos obtidos por
técnicas de clusterizagdo pode ser realizada por diferentes
métricas, que visam quantificar tanto a coeréncia estatistica
quanto a organizagdo espacial dos grupos. Entre as mais
empregadas estd o Silhouette Score, que combina informagdes
sobre a coesao intra-cluster e a separacao inter-cluster.

Para cada ponto i, o valor do Silhouette s(i) é definido
como:

N b(i) —a(i)

0= fnaxal®), b0}

em que:

e a(i) é a distdncia média entre o ponto ¢ e os demais
pontos do mesmo cluster (medida de coesdo);

o b(i) é a menor distincia média entre o ponto ¢ e 0s pontos
pertencentes a outros clusters (medida de separagdo).

Os valores de s(7) variam entre —1 e 1, sendo que:

. S(Z) ~
cluster;

« s(i) = 0 sugere sobreposi¢do entre clusters vizinhos;

e s(2) < 0 indica possivel alocacdo incorreta.

1 indica alocagdo adequada do ponto ao seu

A média dos valores s(¢) para todo o conjunto de dados con-
stitui o Silhouette Score médio, indicador global da qualidade
da segmentacdo. No entanto, essa métrica apresenta limitacdes
em cendrios onde a continuidade espacial € relevante, pois
assume implicitamente que os agrupamentos possuem forma
convexa e estdo bem separados no espaco vetorial [7].

Em aplicacOes geocientificas, outras duas métricas comple-
mentam a andlise da qualidade dos agrupamentos: o Within-
Cluster Sum of Squares (WCSS) e a entropia espacial (H).

o Within-Cluster Sum of Squares (WCSS): esta métrica
quantifica a variabilidade interna dos clusters no espaco
das variaveis. Para um dado numero de clusters &, ela é
definida como:

k
WCSS=>"3" |z — i,

=1 x€C;
€m que:

C; representa o conjunto de pontos atribuidos ao
cluster i;

— u; € o vetor centréide do cluster ¢;

|z — u;]|* é a distancia euclidiana quadratica entre
o ponto x e o centréide do seu grupo.

Valores baixos de WCSS indicam que os pontos estdo
bem concentrados ao redor de seus centrdides, o que
representa alta coesdo estatistica. No entanto, essa métrica
ndo considera a distribui¢do espacial dos dados.

« Entropia espacial (H): essa métrica avalia o grau de
dispersdo geografica dos clusters, medindo o quao mis-
turados os diferentes grupos estdo ao longo do espaco. E



definida com base na distribuicdo de rétulos de cluster em
uma vizinhanga local (por exemplo, os k vizinhos mais
préximos de cada ponto):

k
H=- ch 1Og(pc)a
c=1

em que:
— p. € a propor¢do de vizinhos do ponto que pertencem
ao cluster ¢;
— a soma percorre todos os clusters presentes na viz-
inhanga local.
Esse valor é entdo calculado para todos os pontos e,
posteriormente, uma média é tomada para representar a
entropia espacial global do agrupamento.

Valores baixos de H indicam que, em geral, os vizinhos
de um ponto pertencem ao mesmo cluster — ou seja,
ha continuidade espacial. J4 valores mais altos refletem
mistura entre clusters em regides proximas, indicando
fragmentagdo espacial e menor plausibilidade geoldgica.
Essas trés métricas fornecem visdes complementares sobre a
qualidade dos agrupamentos. Enquanto o Silhouette Score e o
WCSS avaliam a estrutura estatistica no espa¢o multivariado, a
entropia espacial foca na coeréncia geogréfica dos dominios.
Na prética, € comum observar um comportamento compen-
satério entre essas medidas: estratégias que maximizam a
coesdo estatistica podem gerar agrupamentos espacialmente
desconexos, ao passo que métodos que priorizam continuidade
espacial tendem a apresentar maior variabilidade interna. O
ideal, conforme proposto por Martin e Boisvert (2018) [8],
é buscar configuracdes que alcancem um equilibrio entre
essas duas dimensoes, assegurando tanto a robustez estatistica

quanto a plausibilidade geoldgica dos dominios definidos.

D. Métricas de Avaliacdo de Modelos Preditivos

A avaliag¢do do desempenho dos modelos de regressao neste
estudo foi realizada com base em trés métricas amplamente
utilizadas na literatura: o coeficiente de determinacio (R?), o
erro quadritico médio (Root Mean Squared Error — RMSE)
e o erro absoluto médio (Mean Absolute Error — MAE).
Essas métricas fornecem perspectivas complementares sobre
a acurdcia e a qualidade das predigdes.

o Coeficiente de Determinacio (R?): mede a proporcio

da variancia da varidvel dependente que € explicada pelas
varidveis independentes no modelo. E definido como:

i (i — 9:)?

i (i — 9)?
onde y; representa os valores reais, ¢; os valores preditos
pelo modelo, e i é a média dos valores observados. Val-
ores proximos de 1 indicam forte capacidade explicativa,
enquanto valores negativos apontam para um desempenho
pior do que o modelo nulo (que prediz sempre a média).

o Erro Quadratico Médio (RMSE): representa a raiz da
média dos quadrados dos erros de predi¢do, penalizando
mais fortemente erros grandes. E definido por:

RP=1-

Quanto menor o RMSE, mais proximas as previsdes estao
dos valores reais. E uma métrica sensivel a outliers.

e Erro Absoluto Médio (MAE): calcula a média dos
mdédulos das diferencas entre os valores reais e preditos,
sem penalizar quadraticamente os erros:

I _
MAE = gzm — G
i=1
O MAE fornece uma interpretacio direta do erro médio,
sendo menos influenciado por valores extremos em com-
paracdo ao RMSE.

A combinacdo dessas trés métricas permite avaliar tanto
a precisdo global quanto a robustez dos modelos ajustados,
oferecendo uma visdo mais completa do seu desempenho
preditivo em diferentes cendrios.

E. Trabalhos Correlatos

A definicdo de dominios geometalirgicos por meio de
técnicas de clusterizacdo tem sido amplamente explorada na
literatura, com énfase crescente na integracdo entre varidveis
geoquimicas, mineralégicas e espaciais. Em particular, diver-
sos autores tém destacado a importancia de considerar simul-
taneamente a coeréncia estatistica e a continuidade geoldgica
na segmentacdo de depdsitos minerais.

Moreira et al. (2021) [6] propuseram um fluxo de trabalho
que combina machine learning e geoestatistica para definicdo
de dominios, ressaltando que abordagens puramente estatisti-
cas, como o k-means tradicional, podem falhar em representar
a realidade geoldgica quando ndo incorporam informacdes
espaciais [6]. Essa critica € reforcada por Boroh et al. (2021)
[3], que demonstraram que modelos baseados em dominios
geoldgicos e geoquimicos apresentam desempenho superior
a segmentacdo global na estimativa de recursos minerais,
especialmente no que se refere a reducdo de viés e varidncia
em dareas heterogéneas [3].

Silveira (2022) [4] enfatiza o papel dos algoritmos de agru-
pamento na constru¢cdo de dominios estaciondrios, argumen-
tando que a interpretacdo geoldgica isolada pode ser insufi-
ciente para garantir a representatividade estatistica necessdria a
modelagem confidvel [4]. Nessa mesma dire¢do, Mohammadi
et al. (2022) [9] investigaram o impacto da incorporagdo de
medidas de distancia espacial em algoritmos de clusterizagdo e
constataram melhorias substanciais na continuidade dos agru-
pamentos e na delimitacdo de dominios geoestatisticamente
coerentes [9].

Avangos mais recentes apontam para abordagens hibridas.
Abildin et al. (2023) [10] propuseram um modelo que combina
algoritmos de aprendizado de maquina com métodos geoes-
tatisticos para segmentar dominios litolégicos, alcancando
maior alinhamento com as estruturas geoldgicas observadas
em campo [10]. Esse movimento € corroborado por Jung e



Choi (2021) [11], que, em uma revisdo sistematica, mapearam
o crescimento do uso de técnicas de machine learning em min-
eracdo, abrangendo desde a exploracdo até o fechamento de
mina, com destaque para aplicacdes em modelagem preditiva
e otimizagdo de processos [11].

Esses trabalhos refor¢cam a relevancia da clusterizagdo como
etapa critica no fluxo de modelagem mineral e validam o
uso de técnicas multivariadas e espacialmente conscientes,
como as aplicadas neste estudo. A literatura evidencia que
a simples aplica¢do de algoritmos classicos, sem adaptacdes
ao contexto geoldgico, pode comprometer a qualidade dos
modelos preditivos e a interpretagdo dos dominios, justificando
a adocdo de métodos que integrem conhecimento espacial
desde as etapas iniciais da modelagem. Além da definicdo
de dominios geometaldrgicos, incorporar técnicas de regressao
preditiva para estimar varidveis como recuperagdo metalirgica
e consumo energético. Ortiz et al. (2022) [5], em uma revisio
abrangente, destacam que algoritmos baseados em Gradient
Boosting, como o XGBoost, oferecem desempenho superior
a métodos tradicionais em tarefas de predi¢cdo de varidveis
de processo. A robustez frente a outliers e a capacidade
de modelar ndo linearidades complexas sdo apontadas como
diferenciais importantes.

Abildin et al. (2023) [10] reforcam esse posicionamento
ao demonstrarem que modelos treinados separadamente em
dominios litol6gicos apresentam desempenho mais acurado do
que abordagens globais, mesmo quando utilizados algoritmos
de menor complexidade. Tal evidéncia sugere que a combi-
na¢do entre segmentacdo geometallrgica e regressao avangada,
como o Gradient Boosting, pode ser uma estratégia eficaz na
modelagem mineral.

Esses estudos corroboram a proposta adotada neste trabalho,
que combina a definicio de dominios geometalirgicos via
clusterizacdo com a modelagem preditiva supervisionada, bus-
cando avaliar se abordagens locais podem superar modelos
globais em termos de acuricia e robustez estatistica.

III. METODOLOGIA

A metodologia adotada neste estudo foi estruturada com o
objetivo de segmentar um depdsito mineral em dominios ge-
ometaldrgicos internamente homogéneos, a partir de atributos
geoquimicos, mineral6gicos e espaciais, e posteriormente uti-
lizar essa segmentagc@o como base para a modelagem preditiva
de varidveis metaldrgicas. O trabalho foi conduzido em duas
etapas principais: (i) segmentacdo geometalirgica por meio
de técnicas de clusterizacdo e (ii) regressdo das varidveis de
interesse REC e BWI com modelos globais e locais.

A sequéncia de etapas metodoldgicas foi a seguinte:

o Caracterizacio estatistica descritiva: andlise explo-

ratéria das varidveis continuas por meio de boxplots e
de medidas de tendéncia central e de dispersdao, com o
objetivo de compreender a distribuicdo dos atributos e
identificar possiveis outliers e assimetrias relevantes.

o Andlise de correlacio e estrutura espacial: calculo da

matriz de correlacdo de Pearson para avaliar dependéncias
lineares entre as varidveis, além da aplicacdo do Indice

de Moran para quantificar a autocorrelaciio espacial das
varidveis.

Padronizacao dos dados: aplicacdo do StandardScaler
para transformar todas as varidveis em uma escala com
média zero e desvio padrdao um, garantindo que nenhuma
varidvel domine a andlise de agrupamento devido a sua
magnitude.

Clusterizacao multivariada: aplicacio de dois algorit-
mos de agrupamento ndo supervisionado:

— K-means: técnica baseada na minimizacao da varian-
cia intra-cluster.

— Agglomerative Clustering com restricdo espacial:
método hierdrquico que incorpora conectividade ge-
ogrifica por meio de grafos de vizinhanca, pro-
movendo agrupamentos mais continuos no espago
fisico.

Segmentacdo geometalirgica: utilizacdo dos clusters
obtidos para dividir o depdsito em dominios estatistica
e espacialmente homogéneos, servindo como base para a
regressdo segmentada das varidveis metalidrgicas.
Modelagem preditiva global: ajuste de modelos de re-
gressdo para REC e BWI utilizando o conjunto completo
de dados, sem considerar a segmentagdo geometaltirgica.
Essa abordagem visa capturar padrdes gerais nas relagdes
entre os atributos geoquimicos/mineralégicos e as var-
idveis de saida. O algoritmo utilizado foi o XGBoost
Regressor, com otimizacdo de hiperparametros via Ran-
dom Search. Os dados foram divididos em 60% para
treino, 20% para validagdo e 20% para teste, por meio de
amostragem aleatdria simples, sem estratificacdo. Cada
metodologia (modelo global, segmentado por K-means
e segmentado por Agglomerative Clustering) utilizou
particdes independentes, garantindo que ndo houvesse
sobreposi¢do entre os conjuntos de dados usados em cada
experimento.

Modelagem preditiva local por cluster: ajuste de mod-
elos de regressdo especificos dentro de cada dominio
identificado pelos algoritmos de clusterizacio (K-means e
Agglomerative Clustering). Para cada cluster, o conjunto
de dados foi novamente particionado em 60% para treino,
20% para validacdo e 20% para teste, de forma indepen-
dente, permitindo a criacdo de modelos especializados
para contextos estatisticos e espaciais distintos. Na etapa
de avaliacdo, as predi¢des foram realizadas individual-
mente em cada subconjunto de teste e, em seguida, todos
os resultados de predict foram concatenados. As métricas
globais de desempenho (R?, RMSE e MAE) foram entio
calculadas considerando o conjunto combinado de todas
as previsdes, permitindo uma comparacdo direta com o
modelo global. E importante destacar que os conjuntos
de teste utilizados nos modelos segmentados ndo sdo os
mesmos do modelo global. Cada metodologia (global, K-
means e Agglomerative) foi particionada de forma inde-
pendente, o que implica que as métricas de desempenho
foram calculadas sobre amostras distintas. Essa decisdo



metodolégica foi intencional, pois o objetivo central do
estudo ndo € comparar valores absolutos de erro sob
um mesmo conjunto de teste, mas avaliar o comporta-
mento e a capacidade explicativa de cada abordagem em
seus respectivos contextos. Assim, a comparagido entre
os modelos ¢ interpretada em termos de tendéncia de
desempenho — isto é, verificar se a segmentacdo local
aumenta a acurdcia relativa em relacdo a modelagem
global — e n@o como uma comparagdo direta ponto a

ponto sobre o mesmo conjunto de dados.

A. Dados Utilizados

O conjunto de dados analisado neste estudo é composto por
153.076 amostras vdlidas e sem valores ausentes, provenientes
de um modelo de blocos tridimensional que representa a
distribuicao espacial de varidveis geoldgicas e metaliirgicas em
um depdsito mineral. Esse modelo foi construido com base em
dados de furos de sondagem e outros levantamentos geotéc-
nicos, sendo que cada linha da base de dados corresponde a
um bloco georreferenciado com propriedades estimadas por
interpolacdo. Todos os dados disponiveis foram considerados
na andlise, sem exclusdes, e serdo utilizados nas préximas
etapas de regressdo das varidveis geometaltirgicas.

As varidveis disponiveis incluem coordenadas espaciais (x,
Yy, z), teores de minerais (como clays, chalcocite, bornite, chal-
copyrite, tennantite, molibdenite, pyrite) e elementos quimicos
(cu, mo, as). Além disso, o conjunto contempla duas varidveis-
alvo de interesse para modelagem posterior: a recuperacio
metaldrgica (REC) e o indice de moabilidade (BWI).

A andlise exploratéria inicial revelou forte presenca de
assimetrias e outliers, especialmente nos teores minerais e nos
elementos quimicos — um comportamento esperado em sis-
temas geoldgicos complexos. Os boxplots evidenciaram faixas
interquartis estreitas e caudas superiores longas, indicando
grande dispersdo entre as amostras. A varidvel REC apresentou
valores concentrados entre 80% e 95%, com poucas excegdes,
enquanto o BWI mostrou distribui¢do mais centralizada, mas
também com ocorréncia de valores extremos. Os teores de
minerais como chalcopyrite e bornite, bem como do metal
cu, exibiram concentracdes baixas na maior parte dos blocos,
com alguns picos localizados de alto teor.

A correlag@o entre varidveis revelou relagdes consistentes,
destacando-se a forte associacdo entre cobre e chalcopyrite,
o que reforca a coeréncia mineraldgica dos dados. Também
foram observadas correlagdes relevantes entre REC e BWI,
sugerindo que maiores teores € maiores indices de moabil-
idade tendem a estar associados a melhores recuperacgdes
metaldrgicas. Apesar disso, muitas correlagdes entre os pares
de varidveis sdo baixas, indicando uma alta complexidade
estrutural do sistema.
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Fig. 1. Boxplots das varidveis mineraldgicas, geoquimicas e metalirgicas.
Nota-se a presenca de assimetrias e outliers relevantes em praticamente todas
as distribuigdes.
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Fig. 2. Mapa de calor das correlagdes de Pearson entre as varidveis. Destaque
para as correlagdes positivas entre cu, chalcopyrite, bornite, REC e ton.

Do ponto de vista espacial, a avaliacdo do indice de Moran
evidenciou que vdrias varidveis apresentam autocorrelacio
espacial significativa. As varidveis BWI, REC, ton, cu e chal-
copyrite apresentaram os maiores valores de autocorrelacdo,
o que indica que essas propriedades tendem a se distribuir
de forma estruturada no espago. Essa caracteristica é partic-
ularmente importante para a definicio de dominios espaciais
e para a aplicacdo de algoritmos de clusterizagdo que levem
em consideracdo tanto os valores das varidveis quanto a sua
localizacdo geografica. Em contraste, varidveis como as e
mo apresentaram comportamento mais aleatério, com baixa
autocorrelacao.

B. Pré-processamento dos Dados

Com o objetivo de uniformizar a escala das varidveis e as-
segurar que todas contribuam de maneira equitativa na andlise
de agrupamento, foi aplicada a normaliza¢@o por padronizacao
utilizando o método StandardScaler. Esse método transforma
cada varidvel de forma que sua distribui¢do passe a ter média
zero e desvio padrdo igual a um, eliminando o efeito de
magnitude e tornando as varidveis compardveis.
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Fig. 3. Autocorrelacdo espacial das varidveis com base no indice de
Moran. Varidveis com maior estrutura espacial incluem BWI, REC, ton, cu e
chalcopyrite.

A transformacdo ¢é realizada segundo a férmula:

Ty — M
g

Zi =

em que:

e x; representa o valor original da varidvel;
o 1 € a média da varidvel,

e 0 é o desvio padrdo da varidvel,;

e 2; é o valor padronizado resultante.

Como o conjunto de dados ndo apresenta valores ausentes,
ndo foi necessdria a aplicagdo de técnicas de imputagdo, per-
mitindo o uso direto da base na etapa de pré-processamento.

C. Andlise de Clusterizacdo Multivariada

Para segmentar o depdsito em regides com caracteristicas
estatisticas e espaciais semelhantes, foram aplicadas duas
técnicas de agrupamento ndo supervisionado: o K-means e o
Agglomerative Clustering com restri¢do espacial.

E importante ressaltar que, com o objetivo de preservar a
integridade do processo preditivo, as varidveis-alvo recuper-
acdo metaliirgica (REC) e indice de moabilidade (BWI) nio
foram utilizadas na etapa de clusteriza¢do. A segmentacdo foi
realizada exclusivamente com base em varidveis independentes
disponiveis no modelo de blocos:

o Teores minerais: clays, chalcocite, bornite, chalcopyrite,

tennantite, molibdenite, pyrite;

o Elementos quimicos: cu (cobre), mo (molibdénio), as

(arsénio).

Esses atributos refletem caracteristicas mineraldgicas e geo-
quimicas que sdo conhecidas previamente a etapa de proces-
samento, sendo adequados para a definicdo de dominios ge-
ometaltrgicos. A exclusdo de REC e BWI evita vazamento de
informacao (data leakage) e garante que a regressdo posterior
dessas varidveis possa ser feita com base em agrupamentos
genuinamente ndo supervisionados.

1) Selecdo do Niimero de Clusters: A definicdo do nimero
ideal de grupos (k) foi feita por meio do método do cotovelo,
que avalia a relag¢@o entre o nimero de clusters e a inércia total
do sistema — definida como a soma das distancias quadradas
entre os pontos e seus respectivos centrdides. Quanto menor
a inércia, mais compactos e coesos sdo os clusters.

Para essa andlise, foi utilizada a fun¢do KMeans da bib-
lioteca scikit—-learn, implementada em Python, que cal-
cula automaticamente a inércia ao final do ajuste do modelo.
Foi executado um processo iterativo variando £ entre 1 e 10,
e os valores de inércia obtidos foram utilizados para construir
o gréfico de cotovelo.

1e6 Método do Cotovelo

Inércia (soma das distancias quadradas)

2 4 6 8 10
Némero de clusters (k)

Fig. 4. Determinagdo do nimero de clusters via método do cotovelo.

A partir da curva gerada, o valor de k correspondente
ao ponto de inflexdo (onde a taxa de reducdo da inércia se
estabiliza) é adotado como 6timo [7]. A andlise grafica (Figura
4) demonstrou que esse ponto ocorre em k = 4, justificando
a escolha desse valor para ambas as técnicas de agrupamento.

2) Clusterizagdo com o Algoritmo K-means: O algoritmo
K-means foi utilizado como técnica de referéncia pela sua
simplicidade e eficiéncia computacional em grandes volumes
de dados. O método busca minimizar a variancia intra-cluster,
associando cada ponto ao centréide mais préximo e atual-
izando iterativamente os centrdides até a convergéncia.

A fung@o objetivo minimizada é dada por:

k
T=> > llz—ml’ (1)

i=1x2€C;

em que C; representa o conjunto de pontos do cluster i e
u; € o centréide correspondente.

Embora eficaz do ponto de vista estatistico, o K-means
ndo leva em consideracdo a localizagdo espacial dos dados,
podendo gerar agrupamentos fragmentados no espaco fisico
(61, [71.

3) Clusterizagdo Hierdrquica com Restrigdo Espacial:
Para incorporar a estrutura espacial dos dados a anilise,
foi aplicada a técnica de Agglomerative Clustering com re-
stricdo geogréifica, utilizando a implementacdo disponivel na
biblioteca scikit—-learn, em ambiente Python. Embora
o algoritmo em si ndo tenha sido desenvolvido do zero, a
aplicacdo envolveu um nivel significativo de customizag¢do no
pré-processamento dos dados e na construgdo da estrutura de
conectividade espacial.

Inicialmente, os atributos foram separados em dois grupos:
varidveis geoquimicas e mineralégicas e coordenadas espaciais
(x, ¥, 7). Ambos os grupos foram padronizados separadamente
e, em seguida, combinados em uma Unica matriz de entrada
ponderada. Para isso, adotaram-se pesos § = 0,8 para as



varidveis geoquimicas e o = 0,4 para as coordenadas espaci-
ais, com o objetivo de balancear a influéncia relativa de cada
dimensdo no processo de agrupamento.

Esses valores foram determinados por meio de uma busca
aleatéria (random search) no intervalo continuo entre 0 e
1, avaliando diferentes combinacdes de pesos e selecionando
aquela que resultou na melhor coeréncia espacial e estatistica
dos agrupamentos, conforme as métricas descritas anterior-
mente.

Além disso, foi construido um grafo de conectividade
espacial com base nos 10 vizinhos mais préoximos de cada
bloco, considerando apenas as coordenadas tridimensionais.
Esse grafo foi fornecido como parimetro ao algoritmo hi-
erarquico, restringindo a fusdo de clusters apenas entre blocos
espacialmente proximos.

O critério de ligacdo adotado foi o método de Ward,
que busca minimizar a varidncia intra-cluster a cada fusao.
Esse critério calcula o aumento da soma dos quadrados das
distancias (inércia) dentro dos grupos resultantes sempre que
dois clusters sdo unidos, e seleciona a fusdo que gera o
menor aumento possivel. A aplicagdo com k = 4 resultou em
agrupamentos espacialmente contiguos, com maior aderéncia
a estrutura geolégica do depésito [3], [4], [6].

Essa abordagem hibrida, que combina pesos explicitos,
normaliza¢do independente e conectividade espacial, tem sido
amplamente recomendada na literatura geometaliirgica por
garantir maior coeréncia espacial dos dominios — o que é
essencial para aplicagdes em modelagem mineral realista [3],

[4].

D. Regressdo com Gradient Boosting

A modelagem preditiva das varidveis geometaldrgicas neste
trabalho foi realizada por meio do algoritmo de Gradient
Boosting, uma técnica amplamente utilizada em problemas de
regressdo e classificacdo com dados tabulares. Essa abordagem
baseia-se no principio de aprendizado por conjunto (ensemble
learning), combinando sequencialmente multiplos modelos
fracos — normalmente drvores de decisdo — para construir
um modelo forte e robusto.

O funcionamento do Gradient Boosting consiste em ajustar
cada nova arvore para prever os erros residuais do modelo
anterior. A cada iteragcdo, € minimizada uma funcio de perda
(como o erro quadritico médio), direcionando o aprendizado
das drvores seguintes para as amostras com maior erro.

Formalmente, dado um conjunto de dados {(z;,v:)}";, o
modelo preditivo é construido como uma soma de funcdes:

M
Ji= Y fm(w),
m=1
em que cada f,, representa uma arvore de decisdo ajustada
para corrigir os erros residuais da predi¢do acumulada até a
iteracdo m — 1.
Neste trabalho, foi utilizada a biblioteca XGRBoost, uma
implementagdo eficiente e otimizada do Gradient Boosting.
O XGBoost incorpora técnicas adicionais como regularizacao

(L1 e Lo), shrinkage (taxa de aprendizado), subsampling e
paralelizacdo de arvores, o que contribui para melhor gener-
alizacdo e desempenho computacional.

A escolha desse algoritmo se justifica por sua capacidade
de capturar relagdes ndo lineares complexas, lidar bem com
dados com outliers e oferecer 6timo desempenho mesmo
com varidveis altamente correlacionadas — caracteristicas
presentes nos dados geometaltirgicos utilizados.

E. Busca de Hiperpardametros com Random Search

Modelos baseados em Gradient Boosting, como o XGBoost,
possuem diversos hiperparametros que controlam a complex-
idade do modelo, sua regularizagdo e o comportamento da
arvore durante o processo de treinamento. A escolha adequada
desses hiperparametros € essencial para maximizar a perfor-
mance preditiva e evitar problemas como sobreajuste.

Neste trabalho, a selecdo dos hiperparimetros foi real-
izada por meio da técnica de Randomized Search (Random-
SearchCV), que consiste em amostrar aleatoriamente combi-
nagdes de pardmetros a partir de distribuicdes previamente
definidas, ao invés de testar exaustivamente todas as possi-
bilidades como na Grid Search.

As distribuicdes adotadas para a busca foram:

param_dist = {
"n_estimators’:
"max_depth’ :

randint (100,
randint (3, 10),

600),

"learning_rate’: uniform(0.01, 0.2),
"subsample’: uniform (0.7, 0.3),
"colsample_bytree’: uniform(0.7, 0.3),
"reg_alpha’: uniform(0, 1),
"reg_lambda’: uniform (1, 10)

A seguir, apresenta-se a descricdo de cada hiperparametro:

o n_estimators: nimero total de arvores que compdem o
modelo. Valores maiores aumentam o poder de apren-
dizado, mas também o custo computacional e o risco de
sobreajuste.

o max_depth: profundidade maxima de cada 4rvore. Con-
trola a complexidade do modelo; valores mais altos per-
mitem capturar interacdes complexas, mas podem gerar
sobreajuste.

o learning_rate: taxa de aprendizado que controla a con-
tribuicdo de cada nova arvore no modelo final. Valores
menores tornam o aprendizado mais lento, porém mais
robusto.

o subsample: fracdo de amostras utilizada para treinar cada
arvore. Introduz aleatoriedade no treinamento, ajudando
a reduzir o sobreajuste (semelhante ao bagging).

o colsample_bytree: fracio de varidveis (colunas) sele-
cionadas aleatoriamente para treinar cada arvore. Ajuda
a reduzir correlagdo entre drvores e melhorar a general-
izacdo.

o reg_alpha: parimetro de regularizagdo L; (Lasso), que
incentiva a esparsidade dos coeficientes e pode eliminar
varidveis irrelevantes.



o reg_lambda: parametro de regularizacdo L, (Ridge), que
penaliza grandes coeficientes e ajuda a evitar sobreajuste.

Foram testadas 10000 combina¢des aleatérias desses hiper-
parimetros, e a melhor configuragio foi selecionada com base
na métrica de desempenho R? obtida em validagdo cruzada
com 5 folds. Esse processo foi repetido separadamente para
cada varidvel-alvo e para cada modelo treinado (global e local
por cluster).

F. Ambiente Computacional e Ferramentas

Todos os experimentos foram conduzidos em um pc Linux
(Ubuntu 22.04). O coédigo foi desenvolvido em Python 3.12,
utilizando pandas 2.2, scikit—-learn 1.5, xgboost 2.1
e bibliotecas geoespaciais (geopandas e libpysal) para
célculo do indice de Moran e operagdes de vizinhanga. A
busca de hiperpardmetros (RandomizedSearchCV) empregou
validacdo cruzada 5-fold com numpy.random.seed (42).

TABLE I
RESUMO DE FERRAMENTAS E VERSOES

Componente Versao/Detalhe
SO Ubuntu 22.04
Python 3.12

pandas 2.2

scikit-learn 1.5

xgboost 2.1.x
geopandas / libpysal 0.14 / 4

ChatGPT (OpenAl)
Perplexity Al

apoio a redagdo/revisdo (checagem humana)
triagem inicial de referéncias (verificagdo manual)

IV. RESULTADOS
A. Clusterizagdo com o Algoritmo K-means

Apds a aplicagdo do algoritmo K-means com k = 4,
os clusters obtidos apresentaram boa separacdo em termos
de similaridade quimica, porém sem garantir a continuidade
espacial dos blocos. O resultado visual evidencia uma dis-
tribui¢do mais fragmentada, com regides de um mesmo cluster
aparecendo em diferentes zonas do depdsito.

Clusters no espago 3D (k=4)

Clusters
@ Clustero
® Cluster1
® Cluster2

Cluster 3

Fig. 5. Distribuicdo dos clusters no espaco tridimensional utilizando o
algoritmo K-means com k = 4.

O ndmero de blocos por cluster foi:

e Cluster 1: 91.760 blocos
o Cluster 0: 28.647 blocos
o Cluster 2: 28.345 blocos
e Cluster 3: 4.324 blocos

As métricas de avaliac@o foram as seguintes:

o Silhouette Score médio: 0,0060
o WCSS (Within-Cluster Sum of Squares): 973.715,76
« Entropia Espacial (H): 0,5614

O Silhouette Score muito préximo de zero indica fraca
separacdo entre os clusters. Apesar disso, o WCSS sugere
boa compactacio interna. A entropia espacial aponta para uma
distribuicao relativamente dispersa no espago fisico.

B. Clusterizagdo com o Algoritmo Agglomerative com Re-
stricdo Espacial

O agrupamento hierdrquico com restricdo espacial pro-
porcionou uma segmentacdo visualmente mais continua e
coerente com a estrutura tridimensional do depdsito. A im-
posicao de conectividade geogréfica resultou em regides mais
compactas e geologicamente plausiveis.

Aglomerative Clustering

Clusters
@ Clustero
® Cluster1

Fig. 6. Distribui¢io dos clusters no espaco tridimensional utilizando Agglom-
erative Clustering com restricdo espacial e k = 4.

O ntimero de blocos por cluster foi:

e Cluster 0: 56.854 blocos
o Cluster 3: 51.387 blocos
e Cluster 2: 26.456 blocos
e Cluster 1: 18.379 blocos

As métricas de avaliagcdo foram:

o Silhouette Score médio: -0,0073
e WCSS: 1.177.333,40
o Entropia Espacial (H): 0,4855

Apesar do Silhouette Score levemente negativo — o que
pode ser atribuido a limitacdo da métrica para reconhecer con-
tinuidade espacial —, a entropia espacial significativamente
menor e a coeréncia visual reforcam a adequacdo do método
para cendrios com forte dependéncia geogréfica.



C. Comparagdo Entre os Métodos de Agrupamento

A comparacgdo entre os dois métodos evidencia que:

o O K-means apresenta clusters mais compactos do ponto
de vista estatistico, mas menos coerentes do ponto de
vista geoldgico.

o O Agglomerative Clustering com restri¢do espacial pro-
duz agrupamentos espacialmente continuos e mais con-
dizentes com a morfologia geoldgica do depdsito.

o O trade-off entre compactagao estatistica (menor WCSS)
e coeréncia espacial (menor entropia H) deve ser consid-
erado conforme os objetivos da modelagem.

D. Modelagem Preditiva da Recuperagdo

Nesta etapa, foram ajustados modelos de regressdo para
a variavel de interesse recuperacdo metaliirgica (REC), com
o objetivo de avaliar a capacidade preditiva dos algoritmos
em diferentes contextos. As abordagens consideradas incluem
tanto um modelo global, ajustado sobre todo o conjunto de
dados, quanto modelos locais treinados separadamente para
cada cluster geometalurgico.

1) Modelo Global: Com os dominios definidos, foi possivel
dar sequéncia a etapa de regressdo das varidveis de interesse.
Inicialmente, foi ajustado um modelo global para a predicdo
da recuperagdo metaldrgica (REC), utilizando o algoritmo
XGBoost Regressor e todo o conjunto de dados, sem distin¢do
por clusters.

Os resultados obtidos sobre o conjunto de teste indicam um
desempenho preditivo satisfatorio:

o R%:0,7947

o RMSE: 1,6765

« MAE: 1,2318

O coeficiente de determinacdo préximo de 0,80 evidencia
que o modelo consegue explicar uma parcela substancial da
variancia da varidvel recuperagdo. O erro médio absoluto em
torno de 1,23 pontos percentuais € aceitdvel do ponto de vista
operacional para fins de planejamento de processo.

Na Figura 7, s@o apresentadas as visualizacdes correspon-
dentes: o grifico de dispersdo entre valores reais e previstos,
e o histograma da distribuicdo dos residuos.

Real vs Previsto (Teste) - Modelo Global Distribuigao dos Residuos (Teste)
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Fig. 7. Desempenho do modelo global na predi¢do da Recuperacdo: (a
esquerda) comparacdo entre valores reais e previstos; (a direita) distribuicdo
dos residuos.

Observa-se uma forte concentragdo ao longo da diagonal,
indicando bom alinhamento entre predi¢cdes e valores observa-
dos. A distribuicao dos residuos é aproximadamente simétrica
e centrada em zero, o que sugere auséncia de viés sistematico

e comportamento préximo ao esperado para um modelo bem
ajustado.

2) Modelo Local por K-means: Em seguida, foi ajustado
um conjunto de modelos locais para a predicdo da recuperagio
metalirgica (REC), considerando a segmentacdo prévia dos
dados obtida com o algoritmo K-means. Para cada cluster
identificado, foi treinado um modelo independente utilizando
o algoritmo XGBoost Regressor, com particionamento interno
dos dados em treino, validacdo e teste.

A avaliacdo agregada dos modelos locais, considerando
o desempenho sobre os conjuntos de teste de cada cluster,
revelou um leve ganho em relagdo ao modelo global:

o R?:0,8057

o RMSE: 1,6460

o« MAE: 1,2092

O aumento no R? e a redugdo do erro absoluto médio
indicam que a regressdo segmentada por dominios gerados
via K-means foi capaz de capturar nuances locais relevantes,
resultando em predi¢des ligeiramente mais precisas.

A Figura 8 apresenta as visualizacdes consolidadas dos
resultados dos modelos locais: & esquerda, a comparacdo entre
os valores reais e previstos, e a direita, a distribuicdo dos
residuos.

Real vs Previsto - Kmeans Distribuicéo dos Resfduos - k-means

Fig. 8. Desempenho dos modelos locais por cluster (K-means) na predicdo
da Recuperagio.

Visualmente, observa-se uma maior concentragdo ao longo
da reta de identidade e uma distribui¢do de residuos ainda
centrada em zero, porém ligeiramente mais estreita em com-
paracdo ao modelo global — sugerindo uma melhoria na
robustez preditiva por meio da especializacdo dos modelos.

3) Modelo Local por Agglomerative Clustering: Por fim,
foram ajustados modelos locais de regressdo com base na
segmentacdo geometalirgica obtida via Agglomerative Clus-
tering com restricdo espacial. Essa abordagem leva em conta
a conectividade geogréfica entre os blocos, promovendo a for-
magdo de dominios espacialmente contiguos e geologicamente
coerentes.

Assim como no caso do K-means, foi treinado um modelo
XGBoost Regressor separado para cada cluster. O desempenho
agregado obtido nos conjuntos de teste foi ligeiramente supe-
rior ao das demais abordagens, conforme resumo abaixo:

o R?:0,8086

o RMSE: 1,6336

o« MAE: 1,2035



Os resultados indicam que a regressdo segmentada por
dominios definidos com restricdo espacial apresenta a melhor
capacidade explicativa entre as alternativas avaliadas, com o
menor erro absoluto médio e o maior coeficiente de determi-
nacao.

A Figura 9 mostra os resultados consolidados da predigdo
local por Agglomerative Clustering.

Real vs Previsto - Aglomerative Clustering Distribuigao dos Residuos - Aglomerative Clustering
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Fig. 9. Desempenho dos modelos locais por cluster (Agglomerative Cluster-
ing) na predi¢do da Recuperacio.

Observa-se uma concentracdo ainda mais densa ao longo
da reta de identidade em relacdo as demais abordagens, além
de uma distribuicdo de residuos estreita e simétrica, com leve
redugdo na dispersdo. Esses padrdes reforcam a ideia de que a
especializacdo por clusters espacialmente coerentes contribui
para a melhoria do ajuste preditivo.

E. Modelagem de Regressdo para o Indice de Moabilidade
(BWI)

A seguir, sdo apresentados os resultados da modelagem
preditiva para o indice de moabilidade (Bond Work Index
— BWI), varidvel que representa a energia necessdria para
a moagem adequada do minério. Foram testadas duas aborda-
gens: modelo global e modelos segmentados por cluster (K-
means).

Modelo Global: De forma andloga ao modelo de recuper-
acdo, também foi ajustado um modelo global para a predicido
do indice de moabilidade (BWI), utilizando o algoritmo XG-
Boost Regressor e todo o conjunto de dados, sem segmen-
tacoes.

Os resultados obtidos para o conjunto de teste sdo os
seguintes:

o RZ%:0,4440
o RMSE: 1,9305
« MAE: 0,9953

O desempenho preditivo foi inferior ao observado na var-
idvel recuperacdo, com um coeficiente de determinagdo in-
dicando que apenas cerca de 44% da varidncia do BWI ¢é
explicada pelo modelo. Esse resultado sugere que a varidvel
apresenta maior complexidade ou ruido, e que fatores rele-
vantes podem nao estar totalmente representados nas varidveis
utilizadas.

Distribuicao dos Residuos (Teste)
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Fig. 10. Desempenho do modelo global na predicdo do BWI: (a esquerda)
comparagdo entre valores reais e previstos; (a direita) distribuicdo dos resi-
duos.

Conforme mostra a Figura 10, as predi¢des tendem a se
concentrar em uma faixa centralizada, com uma dispersao
considerdvel em relacdo a diagonal ideal. A distribuicdo dos
residuos € razoavelmente simétrica, mas com caudas mais
alongadas em comparagdo ao modelo de recuperacdo, re-
forcando a maior variabilidade do fendmeno a ser modelado.

Esses resultados motivam a investigacdo de abordagens
alternativas, como a segmentagdo espacial por cluster, visando
capturar padrdes mais locais que possam ser responsiveis
por comportamentos distintos do indice de moabilidade no
deposito.

Modelo Segmentado por K-means: Nesta abordagem, o
conjunto de dados foi previamente segmentado em clusters
por meio do algoritmo K-means, e um modelo preditivo foi
treinado separadamente para cada grupo. A ideia € capturar
padrdes locais que possam ser perdidos em um modelo global.

Os resultados consolidados dos modelos treinados em cada
cluster foram:

o RZ%:0,5505

o RMSE: 1,7475

o MAE: 0,9090

Comparando-se com o modelo global, observa-se uma mel-
hora consistente nos trés indicadores. O aumento do coefi-
ciente de determinag@o indica que os modelos segmentados
foram capazes de capturar melhor as variabilidades do BWI,
provavelmente por se ajustarem a regides estatisticamente mais
homogéneas.
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Fig. 11. Desempenho do modelo segmentado por K-means na predigdo do
BWI. A esquerda: relac@o entre valores reais e previstos. A direita: histograma
dos residuos.

A Figura 11 mostra uma distribuicdo de residuos bem
centrada, com uma dispersdo ligeiramente menor do que a
observada no modelo global. Isso refor¢a a hipdtese de que



a segmentagdo introduzida pelo K-means contribui para um
ganho em especializacdo dos modelos locais.

Modelo Segmentado por Agglomerative Clustering: Por
fim, foi testada uma terceira abordagem com segmentacio via
Agglomerative Clustering. Assim como na estratégia anterior,
um modelo foi treinado individualmente para cada cluster
identificado.

Os resultados agregados dos modelos segmentados foram:

o R%:0,5546

o RMSE: 1,7396

« MAE: 0,9015

Esse modelo apresentou desempenho ligeiramente superior
ao segmentado por K-means, consolidando-se como a melhor
abordagem testada para a varidvel BWI. O ganho no R? reflete
uma maior capacidade de explicacdo da varidncia local nos
dados.
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Fig. 12. Desempenho do modelo segmentado por Agglomerative Clustering
na predi¢gdo do BWI. A esquerda: comparagdo entre valores reais e previstos.
A direita: distribui¢do dos residuos.

Na Figura 12, observa-se uma forte concentracdo de resi-
duos em torno de zero, com distribuicdo simétrica e caudas
estreitas. A dispersdao no griafico de predicdo também se
mostra reduzida, indicando previsdes mais consistentes em
comparagdo as abordagens anteriores.

V. CONCLUSAO

Desempenho na Predicdo da Recuperagdo

A Tabela II resume os resultados obtidos pelos trés modelos
de regressdo aplicados a varidvel Recuperagdo.

TABLE 11
COMPARACAO DOS MODELOS PARA A VARIAVEL RECUPERACAO
Modelo R? RMSE  MAE
Global 0,7941  1,6787  1,2331
Segmentado (K-means) 0,8057 1,6460 1,2092
Segmentado (Aglomerativo)  0,8086 1,6336  1,2035

Observa-se uma melhoria progressiva nos indicadores de
desempenho ao se adotar abordagens segmentadas por cluster.
O modelo com Agglomerative Clustering obteve o melhor de-
sempenho em todos os critérios, com ganhos discretos porém
consistentes em relacdo ao modelo global. Isso indica que a
segmentacdo permitiu uma especializagdo dos modelos locais,
que conseguiram capturar com maior precisdo as variacdes
regionais da recuperacdo metalirgica.

Desempenho na Predicdo do BWI

A Tabela III apresenta os mesmos indicadores para os
modelos voltados a predi¢dao do indice de moabilidade (BWI).

TABLE III
COMPARACAO DOS MODELOS PARA A VARIAVEL BWI

Modelo R? RMSE MAE
Global 0,4440  1,9305 0,9953
Segmentado (K-means) 0,5505 1,7475  0,9090
Segmentado (Aglomerativo)  0,5546  1,7396  0,9015

Os ganhos com a segmentagdo sdo ainda mais evidentes na
predicdo do BWI. Enquanto o modelo global explicou apenas
cerca de 44% da variancia da varidvel, os modelos segmenta-
dos atingiram coeficientes de determinagdo superiores a 55%.
Além disso, os erros (RMSE e MAE) foram consideravelmente
reduzidos.

Esses resultados sugerem que o BWI é uma varidvel mais
sensivel a variacdes locais do depdsito, e que a modelagem
segmentada consegue captar nuances que se perdem na abor-
dagem global.

Consideragoes Finais

A comparacido entre os modelos globais e segmentados por
cluster evidencia os beneficios da regionalizacio na mod-
elagem de varidveis geometaldirgicas. As abordagens com
K-means e, especialmente, com Agglomerative Clustering
apresentaram desempenho superior em ambas as varidveis
analisadas.

A principal vantagem da segmentacdo € permitir que oS
modelos se adaptem a regides estatistica e geologicamente
mais homogéneas, resultando em previsdes mais acuradas e
confidveis. Isso é particularmente importante em contextos de
planejamento de lavra e otimizacdo de processos, onde de-
cisdes baseadas em modelos preditivos impactam diretamente
os custos e a eficiéncia da operacao mineral.
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