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Abstract—This work evaluates predictive modeling approaches
for key geometallurgical variables — metallurgical recovery
(rec) and Bond Work Index (BWI) — using geochemical and
mineralogical data from a mineral deposit. Three strategies
are compared: a global model using the XGBoost Regressor
trained on the entire dataset, and two segmented approaches
with local models trained separately on clusters defined by K-
means and spatially-constrained Agglomerative Clustering. The
results show that the segmented models consistently outperform
the global model, with substantial improvements in the coefficient
of determination (R2), as well as reductions in mean absolute
error (MAE) and root mean square error (RMSE). The model
based on Agglomerative Clustering achieved the best overall per-
formance for both target variables, highlighting the contribution
of spatial segmentation to capturing local patterns and enhancing
predictive accuracy in geometallurgical modeling. These findings
reinforce the importance of accounting for spatial heterogeneity
in predictive modeling of mineral deposits.
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I. INTRODUÇÃO

A previsão precisa de variáveis geometalúrgicas é um com-
ponente essencial no planejamento e na tomada de decisões em
projetos de mineração. Em especial, a recuperação metalúrgica
(REC) e o Bond Work Index (BWI) impactam diretamente a
eficiência do processo de beneficiamento mineral e os custos
operacionais [1], [2].

A recuperação metalúrgica representa a proporção do metal
de interesse presente no minério bruto que pode ser efeti-
vamente recuperada durante o processamento. Essa métrica
é fundamental para estimar o retorno econômico de uma
jazida, uma vez que perdas metalúrgicas podem comprometer
significativamente a rentabilidade da operação. Além disso,
podem ocorrer grandes perdas ao processar um material
inadequado às condições de planta, seja por limitações no
tempo de residência, escolha de reagentes ou outras variáveis
operacionais. A variabilidade da recuperação está associada à
composição mineralógica do minério, à presença de minerais
de ganga (componentes sem valor do minério), às condições
de processo e à natureza das associações entre os minerais
valiosos e os minerais hospedeiros [3], [4].

Já o BWI é um indicador da moabilidade do minério,
ou seja, da energia necessária para reduzir o tamanho das
partículas até uma granulometria adequada para o beneficia-
mento. Esse índice, expresso em kWh/t, influencia diretamente
o dimensionamento e o consumo energético dos moinhos
utilizados nas etapas de cominuição (britagem e moagem).
Materiais com altos valores de BWI exigem maior energia para
serem moídos, impactando os custos energéticos da planta [2].

A estimativa antecipada dessas variáveis para blocos geor-
referenciados do modelo de recursos permite:

• Realizar simulações realistas de desempenho da planta de
beneficiamento;

• Otimizar a mistura de minérios (blending) para maxi-
mizar a recuperação e reduzir custos energéticos;

• Apoiar decisões de investimento em tecnologias de pro-
cessamento.

Neste contexto, a aplicação de técnicas de aprendizado
de máquina para prever REC e BWI com base em dados
geoquímicos, mineralógicos e geológicos representa uma es-
tratégia promissora para integrar conhecimento técnico com
tomada de decisões baseadas em dados [5].

Dessa forma, este trabalho tem como objetivos:
• Aplicar e comparar técnicas de clusterização multivariada

em dados geometalúrgicos [4], [6];
• Avaliar a coerência estatística e espacial das segmen-

tações obtidas [3], [7];
• Implementar modelos preditivos para REC e BWI,

avaliando o impacto da segmentação geometalúrgica so-
bre a acurácia das previsões.

II. REFERENCIAL TEÓRICO

A. Clusterização Multivariada
A análise de clusters é uma técnica de aprendizado não

supervisionado amplamente utilizada para segmentar dados
com base em suas similaridades internas. Um dos algoritmos
mais tradicionais é o K-means, que busca minimizar a soma
das distâncias quadradas intra-cluster, assumindo que os gru-
pos formados são aproximadamente esféricos e de tamanho
semelhante.

Apesar de sua eficiência, o K-means considera apenas o
espaço estatístico das variáveis, desconsiderando a localiza-
ção espacial dos dados. Em aplicações geocientíficas, essa



limitação pode comprometer a validade dos agrupamentos,
gerando domínios artificialmente fragmentados e pouco con-
dizentes com a geologia do depósito [4], [6].

Para contornar esse problema, diversas abordagens passaram
a integrar informações espaciais ao processo de clusterização.
Técnicas como o agrupamento hierárquico geoestatístico e
os métodos com restrição de conectividade espacial buscam
preservar a continuidade dos agrupamentos no espaço físico,
produzindo segmentações mais coerentes com a realidade
geológica [3], [6].

B. Geometalurgia e Variabilidade Espacial

Na mineração, a definição de domínios geológicos ou ge-
ometalúrgicos é uma das etapas mais críticas da modelagem
de recursos minerais. Domínios mal definidos podem levar à
mistura de populações geoquímicas distintas, comprometendo
a acurácia das estimativas de teor e a eficácia das decisões de
lavra e beneficiamento [1], [4].

A geometalurgia busca justamente integrar informações
mineralógicas, geoquímicas e espaciais para aprimorar esse
processo, fornecendo uma visão mais holística do depósito.
Quando bem definidos, os domínios geometalúrgicos per-
mitem estimativas mais robustas, favorecem estratégias de
planejamento seletivo e viabilizam modelagens locais por re-
gressão — prática cada vez mais adotada na indústria mineral
[1], [2].

Nesse contexto, compreender a estrutura espacial das
variáveis envolvidas é essencial. Propriedades como a recu-
peração metalúrgica (REC) e o índice de moabilidade (BWI)
tendem a apresentar padrões de continuidade no espaço, re-
fletindo os processos geológicos que originaram o depósito. A
verificação dessa dependência espacial auxilia na escolha de
técnicas mais adequadas de segmentação, como os métodos
de clusterização com restrições geográficas.

Uma das métricas mais utilizadas para quantificar essa
dependência é o Índice de Moran (I), que mede o grau
de autocorrelação espacial de um atributo. Ele compara a
similaridade entre valores observados em locais próximos com
a variância global da variável. Sua fórmula geral é:

I =
n

W
·
∑n

i=1

∑n
j=1 wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)2

onde:
• n é o número total de observações;
• xi e xj são os valores da variável nos locais i e j;
• x̄ é a média da variável;
• wij é o peso que expressa a proximidade espacial entre

os locais i e j (geralmente baseado na distância ou
vizinhança);

• W =
∑

i

∑
j wij é a soma total dos pesos.

Valores positivos de I indicam autocorrelação positiva
(valores semelhantes próximos entre si), enquanto valores
negativos sugerem dispersão espacial. Um valor próximo de
zero indica ausência de estrutura espacial. A aplicação do
Índice de Moran é, portanto, uma etapa importante para validar

a pertinência do uso de métodos que levem em conta a local-
ização geográfica no processo de segmentação geometalúrgica.

C. Métricas de Avaliação de Agrupamentos

A avaliação da qualidade dos agrupamentos obtidos por
técnicas de clusterização pode ser realizada por diferentes
métricas, que visam quantificar tanto a coerência estatística
quanto a organização espacial dos grupos. Entre as mais
empregadas está o Silhouette Score, que combina informações
sobre a coesão intra-cluster e a separação inter-cluster.

Para cada ponto i, o valor do Silhouette s(i) é definido
como:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
,

em que:
• a(i) é a distância média entre o ponto i e os demais

pontos do mesmo cluster (medida de coesão);
• b(i) é a menor distância média entre o ponto i e os pontos

pertencentes a outros clusters (medida de separação).
Os valores de s(i) variam entre −1 e 1, sendo que:
• s(i) ≈ 1 indica alocação adequada do ponto ao seu

cluster;
• s(i) ≈ 0 sugere sobreposição entre clusters vizinhos;
• s(i) < 0 indica possível alocação incorreta.
A média dos valores s(i) para todo o conjunto de dados con-

stitui o Silhouette Score médio, indicador global da qualidade
da segmentação. No entanto, essa métrica apresenta limitações
em cenários onde a continuidade espacial é relevante, pois
assume implicitamente que os agrupamentos possuem forma
convexa e estão bem separados no espaço vetorial [7].

Em aplicações geocientíficas, outras duas métricas comple-
mentam a análise da qualidade dos agrupamentos: o Within-
Cluster Sum of Squares (WCSS) e a entropia espacial (H).

• Within-Cluster Sum of Squares (WCSS): esta métrica
quantifica a variabilidade interna dos clusters no espaço
das variáveis. Para um dado número de clusters k, ela é
definida como:

WCSS =

k∑
i=1

∑
x∈Ci

∥x− µi∥2,

em que:
– Ci representa o conjunto de pontos atribuídos ao

cluster i;
– µi é o vetor centróide do cluster i;
– ∥x − µi∥2 é a distância euclidiana quadrática entre

o ponto x e o centróide do seu grupo.
Valores baixos de WCSS indicam que os pontos estão
bem concentrados ao redor de seus centróides, o que
representa alta coesão estatística. No entanto, essa métrica
não considera a distribuição espacial dos dados.

• Entropia espacial (H): essa métrica avalia o grau de
dispersão geográfica dos clusters, medindo o quão mis-
turados os diferentes grupos estão ao longo do espaço. É



definida com base na distribuição de rótulos de cluster em
uma vizinhança local (por exemplo, os k vizinhos mais
próximos de cada ponto):

H = −
k∑

c=1

pc log(pc),

em que:
– pc é a proporção de vizinhos do ponto que pertencem

ao cluster c;
– a soma percorre todos os clusters presentes na viz-

inhança local.
Esse valor é então calculado para todos os pontos e,
posteriormente, uma média é tomada para representar a
entropia espacial global do agrupamento.
Valores baixos de H indicam que, em geral, os vizinhos
de um ponto pertencem ao mesmo cluster — ou seja,
há continuidade espacial. Já valores mais altos refletem
mistura entre clusters em regiões próximas, indicando
fragmentação espacial e menor plausibilidade geológica.

Essas três métricas fornecem visões complementares sobre a
qualidade dos agrupamentos. Enquanto o Silhouette Score e o
WCSS avaliam a estrutura estatística no espaço multivariado, a
entropia espacial foca na coerência geográfica dos domínios.
Na prática, é comum observar um comportamento compen-
satório entre essas medidas: estratégias que maximizam a
coesão estatística podem gerar agrupamentos espacialmente
desconexos, ao passo que métodos que priorizam continuidade
espacial tendem a apresentar maior variabilidade interna. O
ideal, conforme proposto por Martin e Boisvert (2018) [8],
é buscar configurações que alcancem um equilíbrio entre
essas duas dimensões, assegurando tanto a robustez estatística
quanto a plausibilidade geológica dos domínios definidos.

D. Métricas de Avaliação de Modelos Preditivos

A avaliação do desempenho dos modelos de regressão neste
estudo foi realizada com base em três métricas amplamente
utilizadas na literatura: o coeficiente de determinação (R2), o
erro quadrático médio (Root Mean Squared Error – RMSE)
e o erro absoluto médio (Mean Absolute Error – MAE).
Essas métricas fornecem perspectivas complementares sobre
a acurácia e a qualidade das predições.

• Coeficiente de Determinação (R2): mede a proporção
da variância da variável dependente que é explicada pelas
variáveis independentes no modelo. É definido como:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

onde yi representa os valores reais, ŷi os valores preditos
pelo modelo, e ȳ é a média dos valores observados. Val-
ores próximos de 1 indicam forte capacidade explicativa,
enquanto valores negativos apontam para um desempenho
pior do que o modelo nulo (que prediz sempre a média).

• Erro Quadrático Médio (RMSE): representa a raiz da
média dos quadrados dos erros de predição, penalizando
mais fortemente erros grandes. É definido por:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Quanto menor o RMSE, mais próximas as previsões estão
dos valores reais. É uma métrica sensível a outliers.

• Erro Absoluto Médio (MAE): calcula a média dos
módulos das diferenças entre os valores reais e preditos,
sem penalizar quadraticamente os erros:

MAE =
1

n

n∑
i=1

|yi − ŷi|

O MAE fornece uma interpretação direta do erro médio,
sendo menos influenciado por valores extremos em com-
paração ao RMSE.

A combinação dessas três métricas permite avaliar tanto
a precisão global quanto a robustez dos modelos ajustados,
oferecendo uma visão mais completa do seu desempenho
preditivo em diferentes cenários.

E. Trabalhos Correlatos

A definição de domínios geometalúrgicos por meio de
técnicas de clusterização tem sido amplamente explorada na
literatura, com ênfase crescente na integração entre variáveis
geoquímicas, mineralógicas e espaciais. Em particular, diver-
sos autores têm destacado a importância de considerar simul-
taneamente a coerência estatística e a continuidade geológica
na segmentação de depósitos minerais.

Moreira et al. (2021) [6] propuseram um fluxo de trabalho
que combina machine learning e geoestatística para definição
de domínios, ressaltando que abordagens puramente estatísti-
cas, como o k-means tradicional, podem falhar em representar
a realidade geológica quando não incorporam informações
espaciais [6]. Essa crítica é reforçada por Boroh et al. (2021)
[3], que demonstraram que modelos baseados em domínios
geológicos e geoquímicos apresentam desempenho superior
à segmentação global na estimativa de recursos minerais,
especialmente no que se refere à redução de viés e variância
em áreas heterogêneas [3].

Silveira (2022) [4] enfatiza o papel dos algoritmos de agru-
pamento na construção de domínios estacionários, argumen-
tando que a interpretação geológica isolada pode ser insufi-
ciente para garantir a representatividade estatística necessária à
modelagem confiável [4]. Nessa mesma direção, Mohammadi
et al. (2022) [9] investigaram o impacto da incorporação de
medidas de distância espacial em algoritmos de clusterização e
constataram melhorias substanciais na continuidade dos agru-
pamentos e na delimitação de domínios geoestatisticamente
coerentes [9].

Avanços mais recentes apontam para abordagens híbridas.
Abildin et al. (2023) [10] propuseram um modelo que combina
algoritmos de aprendizado de máquina com métodos geoes-
tatísticos para segmentar domínios litológicos, alcançando
maior alinhamento com as estruturas geológicas observadas
em campo [10]. Esse movimento é corroborado por Jung e



Choi (2021) [11], que, em uma revisão sistemática, mapearam
o crescimento do uso de técnicas de machine learning em min-
eração, abrangendo desde a exploração até o fechamento de
mina, com destaque para aplicações em modelagem preditiva
e otimização de processos [11].

Esses trabalhos reforçam a relevância da clusterização como
etapa crítica no fluxo de modelagem mineral e validam o
uso de técnicas multivariadas e espacialmente conscientes,
como as aplicadas neste estudo. A literatura evidencia que
a simples aplicação de algoritmos clássicos, sem adaptações
ao contexto geológico, pode comprometer a qualidade dos
modelos preditivos e a interpretação dos domínios, justificando
a adoção de métodos que integrem conhecimento espacial
desde as etapas iniciais da modelagem. Além da definição
de domínios geometalúrgicos, incorporar técnicas de regressão
preditiva para estimar variáveis como recuperação metalúrgica
e consumo energético. Ortiz et al. (2022) [5], em uma revisão
abrangente, destacam que algoritmos baseados em Gradient
Boosting, como o XGBoost, oferecem desempenho superior
a métodos tradicionais em tarefas de predição de variáveis
de processo. A robustez frente a outliers e a capacidade
de modelar não linearidades complexas são apontadas como
diferenciais importantes.

Abildin et al. (2023) [10] reforçam esse posicionamento
ao demonstrarem que modelos treinados separadamente em
domínios litológicos apresentam desempenho mais acurado do
que abordagens globais, mesmo quando utilizados algoritmos
de menor complexidade. Tal evidência sugere que a combi-
nação entre segmentação geometalúrgica e regressão avançada,
como o Gradient Boosting, pode ser uma estratégia eficaz na
modelagem mineral.

Esses estudos corroboram a proposta adotada neste trabalho,
que combina a definição de domínios geometalúrgicos via
clusterização com a modelagem preditiva supervisionada, bus-
cando avaliar se abordagens locais podem superar modelos
globais em termos de acurácia e robustez estatística.

III. METODOLOGIA

A metodologia adotada neste estudo foi estruturada com o
objetivo de segmentar um depósito mineral em domínios ge-
ometalúrgicos internamente homogêneos, a partir de atributos
geoquímicos, mineralógicos e espaciais, e posteriormente uti-
lizar essa segmentação como base para a modelagem preditiva
de variáveis metalúrgicas. O trabalho foi conduzido em duas
etapas principais: (i) segmentação geometalúrgica por meio
de técnicas de clusterização e (ii) regressão das variáveis de
interesse REC e BWI com modelos globais e locais.

A sequência de etapas metodológicas foi a seguinte:
• Caracterização estatística descritiva: análise explo-

ratória das variáveis contínuas por meio de boxplots e
de medidas de tendência central e de dispersão, com o
objetivo de compreender a distribuição dos atributos e
identificar possíveis outliers e assimetrias relevantes.

• Análise de correlação e estrutura espacial: cálculo da
matriz de correlação de Pearson para avaliar dependências
lineares entre as variáveis, além da aplicação do Índice

de Moran para quantificar a autocorrelação espacial das
variáveis.

• Padronização dos dados: aplicação do StandardScaler
para transformar todas as variáveis em uma escala com
média zero e desvio padrão um, garantindo que nenhuma
variável domine a análise de agrupamento devido à sua
magnitude.

• Clusterização multivariada: aplicação de dois algorit-
mos de agrupamento não supervisionado:

– K-means: técnica baseada na minimização da variân-
cia intra-cluster.

– Agglomerative Clustering com restrição espacial:
método hierárquico que incorpora conectividade ge-
ográfica por meio de grafos de vizinhança, pro-
movendo agrupamentos mais contínuos no espaço
físico.

• Segmentação geometalúrgica: utilização dos clusters
obtidos para dividir o depósito em domínios estatística
e espacialmente homogêneos, servindo como base para a
regressão segmentada das variáveis metalúrgicas.

• Modelagem preditiva global: ajuste de modelos de re-
gressão para REC e BWI utilizando o conjunto completo
de dados, sem considerar a segmentação geometalúrgica.
Essa abordagem visa capturar padrões gerais nas relações
entre os atributos geoquímicos/mineralógicos e as var-
iáveis de saída. O algoritmo utilizado foi o XGBoost
Regressor, com otimização de hiperparâmetros via Ran-
dom Search. Os dados foram divididos em 60% para
treino, 20% para validação e 20% para teste, por meio de
amostragem aleatória simples, sem estratificação. Cada
metodologia (modelo global, segmentado por K-means
e segmentado por Agglomerative Clustering) utilizou
partições independentes, garantindo que não houvesse
sobreposição entre os conjuntos de dados usados em cada
experimento.

• Modelagem preditiva local por cluster: ajuste de mod-
elos de regressão específicos dentro de cada domínio
identificado pelos algoritmos de clusterização (K-means e
Agglomerative Clustering). Para cada cluster, o conjunto
de dados foi novamente particionado em 60% para treino,
20% para validação e 20% para teste, de forma indepen-
dente, permitindo a criação de modelos especializados
para contextos estatísticos e espaciais distintos. Na etapa
de avaliação, as predições foram realizadas individual-
mente em cada subconjunto de teste e, em seguida, todos
os resultados de predict foram concatenados. As métricas
globais de desempenho (R2, RMSE e MAE) foram então
calculadas considerando o conjunto combinado de todas
as previsões, permitindo uma comparação direta com o
modelo global. É importante destacar que os conjuntos
de teste utilizados nos modelos segmentados não são os
mesmos do modelo global. Cada metodologia (global, K-
means e Agglomerative) foi particionada de forma inde-
pendente, o que implica que as métricas de desempenho
foram calculadas sobre amostras distintas. Essa decisão



metodológica foi intencional, pois o objetivo central do
estudo não é comparar valores absolutos de erro sob
um mesmo conjunto de teste, mas avaliar o comporta-
mento e a capacidade explicativa de cada abordagem em
seus respectivos contextos. Assim, a comparação entre
os modelos é interpretada em termos de tendência de
desempenho — isto é, verificar se a segmentação local
aumenta a acurácia relativa em relação à modelagem
global — e não como uma comparação direta ponto a
ponto sobre o mesmo conjunto de dados.

A. Dados Utilizados

O conjunto de dados analisado neste estudo é composto por
153.076 amostras válidas e sem valores ausentes, provenientes
de um modelo de blocos tridimensional que representa a
distribuição espacial de variáveis geológicas e metalúrgicas em
um depósito mineral. Esse modelo foi construído com base em
dados de furos de sondagem e outros levantamentos geotéc-
nicos, sendo que cada linha da base de dados corresponde a
um bloco georreferenciado com propriedades estimadas por
interpolação. Todos os dados disponíveis foram considerados
na análise, sem exclusões, e serão utilizados nas próximas
etapas de regressão das variáveis geometalúrgicas.

As variáveis disponíveis incluem coordenadas espaciais (x,
y, z), teores de minerais (como clays, chalcocite, bornite, chal-
copyrite, tennantite, molibdenite, pyrite) e elementos químicos
(cu, mo, as). Além disso, o conjunto contempla duas variáveis-
alvo de interesse para modelagem posterior: a recuperação
metalúrgica (REC) e o índice de moabilidade (BWI).

A análise exploratória inicial revelou forte presença de
assimetrias e outliers, especialmente nos teores minerais e nos
elementos químicos — um comportamento esperado em sis-
temas geológicos complexos. Os boxplots evidenciaram faixas
interquartis estreitas e caudas superiores longas, indicando
grande dispersão entre as amostras. A variável REC apresentou
valores concentrados entre 80% e 95%, com poucas exceções,
enquanto o BWI mostrou distribuição mais centralizada, mas
também com ocorrência de valores extremos. Os teores de
minerais como chalcopyrite e bornite, bem como do metal
cu, exibiram concentrações baixas na maior parte dos blocos,
com alguns picos localizados de alto teor.

A correlação entre variáveis revelou relações consistentes,
destacando-se a forte associação entre cobre e chalcopyrite,
o que reforça a coerência mineralógica dos dados. Também
foram observadas correlações relevantes entre REC e BWI,
sugerindo que maiores teores e maiores índices de moabil-
idade tendem a estar associados a melhores recuperações
metalúrgicas. Apesar disso, muitas correlações entre os pares
de variáveis são baixas, indicando uma alta complexidade
estrutural do sistema.

Fig. 1. Boxplots das variáveis mineralógicas, geoquímicas e metalúrgicas.
Nota-se a presença de assimetrias e outliers relevantes em praticamente todas
as distribuições.

Fig. 2. Mapa de calor das correlações de Pearson entre as variáveis. Destaque
para as correlações positivas entre cu, chalcopyrite, bornite, REC e ton.

Do ponto de vista espacial, a avaliação do índice de Moran
evidenciou que várias variáveis apresentam autocorrelação
espacial significativa. As variáveis BWI, REC, ton, cu e chal-
copyrite apresentaram os maiores valores de autocorrelação,
o que indica que essas propriedades tendem a se distribuir
de forma estruturada no espaço. Essa característica é partic-
ularmente importante para a definição de domínios espaciais
e para a aplicação de algoritmos de clusterização que levem
em consideração tanto os valores das variáveis quanto a sua
localização geográfica. Em contraste, variáveis como as e
mo apresentaram comportamento mais aleatório, com baixa
autocorrelação.

B. Pré-processamento dos Dados

Com o objetivo de uniformizar a escala das variáveis e as-
segurar que todas contribuam de maneira equitativa na análise
de agrupamento, foi aplicada a normalização por padronização
utilizando o método StandardScaler. Esse método transforma
cada variável de forma que sua distribuição passe a ter média
zero e desvio padrão igual a um, eliminando o efeito de
magnitude e tornando as variáveis comparáveis.



Fig. 3. Autocorrelação espacial das variáveis com base no índice de
Moran. Variáveis com maior estrutura espacial incluem BWI, REC, ton, cu e
chalcopyrite.

A transformação é realizada segundo a fórmula:

zi =
xi − µ

σ

em que:
• xi representa o valor original da variável;
• µ é a média da variável;
• σ é o desvio padrão da variável;
• zi é o valor padronizado resultante.
Como o conjunto de dados não apresenta valores ausentes,

não foi necessária a aplicação de técnicas de imputação, per-
mitindo o uso direto da base na etapa de pré-processamento.

C. Análise de Clusterização Multivariada

Para segmentar o depósito em regiões com características
estatísticas e espaciais semelhantes, foram aplicadas duas
técnicas de agrupamento não supervisionado: o K-means e o
Agglomerative Clustering com restrição espacial.

É importante ressaltar que, com o objetivo de preservar a
integridade do processo preditivo, as variáveis-alvo recuper-
ação metalúrgica (REC) e índice de moabilidade (BWI) não
foram utilizadas na etapa de clusterização. A segmentação foi
realizada exclusivamente com base em variáveis independentes
disponíveis no modelo de blocos:

• Teores minerais: clays, chalcocite, bornite, chalcopyrite,
tennantite, molibdenite, pyrite;

• Elementos químicos: cu (cobre), mo (molibdênio), as
(arsênio).

Esses atributos refletem características mineralógicas e geo-
químicas que são conhecidas previamente à etapa de proces-
samento, sendo adequados para a definição de domínios ge-
ometalúrgicos. A exclusão de REC e BWI evita vazamento de
informação (data leakage) e garante que a regressão posterior
dessas variáveis possa ser feita com base em agrupamentos
genuinamente não supervisionados.

1) Seleção do Número de Clusters: A definição do número
ideal de grupos (k) foi feita por meio do método do cotovelo,
que avalia a relação entre o número de clusters e a inércia total
do sistema — definida como a soma das distâncias quadradas
entre os pontos e seus respectivos centróides. Quanto menor
a inércia, mais compactos e coesos são os clusters.

Para essa análise, foi utilizada a função KMeans da bib-
lioteca scikit-learn, implementada em Python, que cal-
cula automaticamente a inércia ao final do ajuste do modelo.
Foi executado um processo iterativo variando k entre 1 e 10,
e os valores de inércia obtidos foram utilizados para construir
o gráfico de cotovelo.

Fig. 4. Determinação do número de clusters via método do cotovelo.

A partir da curva gerada, o valor de k correspondente
ao ponto de inflexão (onde a taxa de redução da inércia se
estabiliza) é adotado como ótimo [7]. A análise gráfica (Figura
4) demonstrou que esse ponto ocorre em k = 4, justificando
a escolha desse valor para ambas as técnicas de agrupamento.

2) Clusterização com o Algoritmo K-means: O algoritmo
K-means foi utilizado como técnica de referência pela sua
simplicidade e eficiência computacional em grandes volumes
de dados. O método busca minimizar a variância intra-cluster,
associando cada ponto ao centróide mais próximo e atual-
izando iterativamente os centróides até a convergência.

A função objetivo minimizada é dada por:

J =

k∑
i=1

∑
x∈Ci

∥x− µi∥2 (1)

em que Ci representa o conjunto de pontos do cluster i e
µi é o centróide correspondente.

Embora eficaz do ponto de vista estatístico, o K-means
não leva em consideração a localização espacial dos dados,
podendo gerar agrupamentos fragmentados no espaço físico
[6], [7].

3) Clusterização Hierárquica com Restrição Espacial:
Para incorporar a estrutura espacial dos dados à análise,
foi aplicada a técnica de Agglomerative Clustering com re-
strição geográfica, utilizando a implementação disponível na
biblioteca scikit-learn, em ambiente Python. Embora
o algoritmo em si não tenha sido desenvolvido do zero, a
aplicação envolveu um nível significativo de customização no
pré-processamento dos dados e na construção da estrutura de
conectividade espacial.

Inicialmente, os atributos foram separados em dois grupos:
variáveis geoquímicas e mineralógicas e coordenadas espaciais
(x, y, z). Ambos os grupos foram padronizados separadamente
e, em seguida, combinados em uma única matriz de entrada
ponderada. Para isso, adotaram-se pesos β = 0,8 para as



variáveis geoquímicas e α = 0,4 para as coordenadas espaci-
ais, com o objetivo de balancear a influência relativa de cada
dimensão no processo de agrupamento.

Esses valores foram determinados por meio de uma busca
aleatória (random search) no intervalo contínuo entre 0 e
1, avaliando diferentes combinações de pesos e selecionando
aquela que resultou na melhor coerência espacial e estatística
dos agrupamentos, conforme as métricas descritas anterior-
mente.

Além disso, foi construído um grafo de conectividade
espacial com base nos 10 vizinhos mais próximos de cada
bloco, considerando apenas as coordenadas tridimensionais.
Esse grafo foi fornecido como parâmetro ao algoritmo hi-
erárquico, restringindo a fusão de clusters apenas entre blocos
espacialmente próximos.

O critério de ligação adotado foi o método de Ward,
que busca minimizar a variância intra-cluster a cada fusão.
Esse critério calcula o aumento da soma dos quadrados das
distâncias (inércia) dentro dos grupos resultantes sempre que
dois clusters são unidos, e seleciona a fusão que gera o
menor aumento possível. A aplicação com k = 4 resultou em
agrupamentos espacialmente contíguos, com maior aderência
à estrutura geológica do depósito [3], [4], [6].

Essa abordagem híbrida, que combina pesos explícitos,
normalização independente e conectividade espacial, tem sido
amplamente recomendada na literatura geometalúrgica por
garantir maior coerência espacial dos domínios — o que é
essencial para aplicações em modelagem mineral realista [3],
[4].

D. Regressão com Gradient Boosting

A modelagem preditiva das variáveis geometalúrgicas neste
trabalho foi realizada por meio do algoritmo de Gradient
Boosting, uma técnica amplamente utilizada em problemas de
regressão e classificação com dados tabulares. Essa abordagem
baseia-se no princípio de aprendizado por conjunto (ensemble
learning), combinando sequencialmente múltiplos modelos
fracos — normalmente árvores de decisão — para construir
um modelo forte e robusto.

O funcionamento do Gradient Boosting consiste em ajustar
cada nova árvore para prever os erros residuais do modelo
anterior. A cada iteração, é minimizada uma função de perda
(como o erro quadrático médio), direcionando o aprendizado
das árvores seguintes para as amostras com maior erro.

Formalmente, dado um conjunto de dados {(xi, yi)}ni=1, o
modelo preditivo é construído como uma soma de funções:

ŷi =

M∑
m=1

fm(xi),

em que cada fm representa uma árvore de decisão ajustada
para corrigir os erros residuais da predição acumulada até a
iteração m− 1.

Neste trabalho, foi utilizada a biblioteca XGBoost, uma
implementação eficiente e otimizada do Gradient Boosting.
O XGBoost incorpora técnicas adicionais como regularização

(L1 e L2), shrinkage (taxa de aprendizado), subsampling e
paralelização de árvores, o que contribui para melhor gener-
alização e desempenho computacional.

A escolha desse algoritmo se justifica por sua capacidade
de capturar relações não lineares complexas, lidar bem com
dados com outliers e oferecer ótimo desempenho mesmo
com variáveis altamente correlacionadas — características
presentes nos dados geometalúrgicos utilizados.

E. Busca de Hiperparâmetros com Random Search

Modelos baseados em Gradient Boosting, como o XGBoost,
possuem diversos hiperparâmetros que controlam a complex-
idade do modelo, sua regularização e o comportamento da
árvore durante o processo de treinamento. A escolha adequada
desses hiperparâmetros é essencial para maximizar a perfor-
mance preditiva e evitar problemas como sobreajuste.

Neste trabalho, a seleção dos hiperparâmetros foi real-
izada por meio da técnica de Randomized Search (Random-
SearchCV), que consiste em amostrar aleatoriamente combi-
nações de parâmetros a partir de distribuições previamente
definidas, ao invés de testar exaustivamente todas as possi-
bilidades como na Grid Search.

As distribuições adotadas para a busca foram:

param_dist = {
’n_estimators’: randint(100, 600),
’max_depth’: randint(3, 10),
’learning_rate’: uniform(0.01, 0.2),
’subsample’: uniform(0.7, 0.3),
’colsample_bytree’: uniform(0.7, 0.3),
’reg_alpha’: uniform(0, 1),
’reg_lambda’: uniform(1, 10)

}

A seguir, apresenta-se a descrição de cada hiperparâmetro:
• n_estimators: número total de árvores que compõem o

modelo. Valores maiores aumentam o poder de apren-
dizado, mas também o custo computacional e o risco de
sobreajuste.

• max_depth: profundidade máxima de cada árvore. Con-
trola a complexidade do modelo; valores mais altos per-
mitem capturar interações complexas, mas podem gerar
sobreajuste.

• learning_rate: taxa de aprendizado que controla a con-
tribuição de cada nova árvore no modelo final. Valores
menores tornam o aprendizado mais lento, porém mais
robusto.

• subsample: fração de amostras utilizada para treinar cada
árvore. Introduz aleatoriedade no treinamento, ajudando
a reduzir o sobreajuste (semelhante ao bagging).

• colsample_bytree: fração de variáveis (colunas) sele-
cionadas aleatoriamente para treinar cada árvore. Ajuda
a reduzir correlação entre árvores e melhorar a general-
ização.

• reg_alpha: parâmetro de regularização L1 (Lasso), que
incentiva a esparsidade dos coeficientes e pode eliminar
variáveis irrelevantes.



• reg_lambda: parâmetro de regularização L2 (Ridge), que
penaliza grandes coeficientes e ajuda a evitar sobreajuste.

Foram testadas 10000 combinações aleatórias desses hiper-
parâmetros, e a melhor configuração foi selecionada com base
na métrica de desempenho R2 obtida em validação cruzada
com 5 folds. Esse processo foi repetido separadamente para
cada variável-alvo e para cada modelo treinado (global e local
por cluster).

F. Ambiente Computacional e Ferramentas

Todos os experimentos foram conduzidos em um pc Linux
(Ubuntu 22.04). O código foi desenvolvido em Python 3.12,
utilizando pandas 2.2, scikit-learn 1.5, xgboost 2.1
e bibliotecas geoespaciais (geopandas e libpysal) para
cálculo do índice de Moran e operações de vizinhança. A
busca de hiperparâmetros (RandomizedSearchCV) empregou
validação cruzada 5-fold com numpy.random.seed(42).

TABLE I
RESUMO DE FERRAMENTAS E VERSÕES

Componente Versão/Detalhe

SO Ubuntu 22.04
Python 3.12
pandas 2.2
scikit-learn 1.5
xgboost 2.1.x
geopandas / libpysal 0.14 / 4
ChatGPT (OpenAI) apoio à redação/revisão (checagem humana)
Perplexity AI triagem inicial de referências (verificação manual)

IV. RESULTADOS

A. Clusterização com o Algoritmo K-means

Após a aplicação do algoritmo K-means com k = 4,
os clusters obtidos apresentaram boa separação em termos
de similaridade química, porém sem garantir a continuidade
espacial dos blocos. O resultado visual evidencia uma dis-
tribuição mais fragmentada, com regiões de um mesmo cluster
aparecendo em diferentes zonas do depósito.

Fig. 5. Distribuição dos clusters no espaço tridimensional utilizando o
algoritmo K-means com k = 4.

O número de blocos por cluster foi:

• Cluster 1: 91.760 blocos
• Cluster 0: 28.647 blocos
• Cluster 2: 28.345 blocos
• Cluster 3: 4.324 blocos

As métricas de avaliação foram as seguintes:

• Silhouette Score médio: 0,0060
• WCSS (Within-Cluster Sum of Squares): 973.715,76
• Entropia Espacial (H): 0,5614

O Silhouette Score muito próximo de zero indica fraca
separação entre os clusters. Apesar disso, o WCSS sugere
boa compactação interna. A entropia espacial aponta para uma
distribuição relativamente dispersa no espaço físico.

B. Clusterização com o Algoritmo Agglomerative com Re-
strição Espacial

O agrupamento hierárquico com restrição espacial pro-
porcionou uma segmentação visualmente mais contínua e
coerente com a estrutura tridimensional do depósito. A im-
posição de conectividade geográfica resultou em regiões mais
compactas e geologicamente plausíveis.

Fig. 6. Distribuição dos clusters no espaço tridimensional utilizando Agglom-
erative Clustering com restrição espacial e k = 4.

O número de blocos por cluster foi:

• Cluster 0: 56.854 blocos
• Cluster 3: 51.387 blocos
• Cluster 2: 26.456 blocos
• Cluster 1: 18.379 blocos

As métricas de avaliação foram:

• Silhouette Score médio: -0,0073
• WCSS: 1.177.333,40
• Entropia Espacial (H): 0,4855

Apesar do Silhouette Score levemente negativo — o que
pode ser atribuído à limitação da métrica para reconhecer con-
tinuidade espacial —, a entropia espacial significativamente
menor e a coerência visual reforçam a adequação do método
para cenários com forte dependência geográfica.



C. Comparação Entre os Métodos de Agrupamento

A comparação entre os dois métodos evidencia que:
• O K-means apresenta clusters mais compactos do ponto

de vista estatístico, mas menos coerentes do ponto de
vista geológico.

• O Agglomerative Clustering com restrição espacial pro-
duz agrupamentos espacialmente contínuos e mais con-
dizentes com a morfologia geológica do depósito.

• O trade-off entre compactação estatística (menor WCSS)
e coerência espacial (menor entropia H) deve ser consid-
erado conforme os objetivos da modelagem.

D. Modelagem Preditiva da Recuperação

Nesta etapa, foram ajustados modelos de regressão para
a variável de interesse recuperação metalúrgica (REC), com
o objetivo de avaliar a capacidade preditiva dos algoritmos
em diferentes contextos. As abordagens consideradas incluem
tanto um modelo global, ajustado sobre todo o conjunto de
dados, quanto modelos locais treinados separadamente para
cada cluster geometalúrgico.

1) Modelo Global: Com os domínios definidos, foi possível
dar sequência à etapa de regressão das variáveis de interesse.
Inicialmente, foi ajustado um modelo global para a predição
da recuperação metalúrgica (REC), utilizando o algoritmo
XGBoost Regressor e todo o conjunto de dados, sem distinção
por clusters.

Os resultados obtidos sobre o conjunto de teste indicam um
desempenho preditivo satisfatório:

• R2: 0,7947
• RMSE: 1,6765
• MAE: 1,2318
O coeficiente de determinação próximo de 0,80 evidencia

que o modelo consegue explicar uma parcela substancial da
variância da variável recuperação. O erro médio absoluto em
torno de 1,23 pontos percentuais é aceitável do ponto de vista
operacional para fins de planejamento de processo.

Na Figura 7, são apresentadas as visualizações correspon-
dentes: o gráfico de dispersão entre valores reais e previstos,
e o histograma da distribuição dos resíduos.

Fig. 7. Desempenho do modelo global na predição da Recuperação: (à
esquerda) comparação entre valores reais e previstos; (à direita) distribuição
dos resíduos.

Observa-se uma forte concentração ao longo da diagonal,
indicando bom alinhamento entre predições e valores observa-
dos. A distribuição dos resíduos é aproximadamente simétrica
e centrada em zero, o que sugere ausência de viés sistemático

e comportamento próximo ao esperado para um modelo bem
ajustado.

2) Modelo Local por K-means: Em seguida, foi ajustado
um conjunto de modelos locais para a predição da recuperação
metalúrgica (REC), considerando a segmentação prévia dos
dados obtida com o algoritmo K-means. Para cada cluster
identificado, foi treinado um modelo independente utilizando
o algoritmo XGBoost Regressor, com particionamento interno
dos dados em treino, validação e teste.

A avaliação agregada dos modelos locais, considerando
o desempenho sobre os conjuntos de teste de cada cluster,
revelou um leve ganho em relação ao modelo global:

• R2: 0,8057
• RMSE: 1,6460
• MAE: 1,2092
O aumento no R2 e a redução do erro absoluto médio

indicam que a regressão segmentada por domínios gerados
via K-means foi capaz de capturar nuances locais relevantes,
resultando em predições ligeiramente mais precisas.

A Figura 8 apresenta as visualizações consolidadas dos
resultados dos modelos locais: à esquerda, a comparação entre
os valores reais e previstos, e à direita, a distribuição dos
resíduos.

Fig. 8. Desempenho dos modelos locais por cluster (K-means) na predição
da Recuperação.

Visualmente, observa-se uma maior concentração ao longo
da reta de identidade e uma distribuição de resíduos ainda
centrada em zero, porém ligeiramente mais estreita em com-
paração ao modelo global — sugerindo uma melhoria na
robustez preditiva por meio da especialização dos modelos.

3) Modelo Local por Agglomerative Clustering: Por fim,
foram ajustados modelos locais de regressão com base na
segmentação geometalúrgica obtida via Agglomerative Clus-
tering com restrição espacial. Essa abordagem leva em conta
a conectividade geográfica entre os blocos, promovendo a for-
mação de domínios espacialmente contíguos e geologicamente
coerentes.

Assim como no caso do K-means, foi treinado um modelo
XGBoost Regressor separado para cada cluster. O desempenho
agregado obtido nos conjuntos de teste foi ligeiramente supe-
rior ao das demais abordagens, conforme resumo abaixo:

• R2: 0,8086
• RMSE: 1,6336
• MAE: 1,2035



Os resultados indicam que a regressão segmentada por
domínios definidos com restrição espacial apresenta a melhor
capacidade explicativa entre as alternativas avaliadas, com o
menor erro absoluto médio e o maior coeficiente de determi-
nação.

A Figura 9 mostra os resultados consolidados da predição
local por Agglomerative Clustering.

Fig. 9. Desempenho dos modelos locais por cluster (Agglomerative Cluster-
ing) na predição da Recuperação.

Observa-se uma concentração ainda mais densa ao longo
da reta de identidade em relação às demais abordagens, além
de uma distribuição de resíduos estreita e simétrica, com leve
redução na dispersão. Esses padrões reforçam a ideia de que a
especialização por clusters espacialmente coerentes contribui
para a melhoria do ajuste preditivo.

E. Modelagem de Regressão para o Índice de Moabilidade
(BWI)

A seguir, são apresentados os resultados da modelagem
preditiva para o índice de moabilidade (Bond Work Index
— BWI), variável que representa a energia necessária para
a moagem adequada do minério. Foram testadas duas aborda-
gens: modelo global e modelos segmentados por cluster (K-
means).

Modelo Global: De forma análoga ao modelo de recuper-
ação, também foi ajustado um modelo global para a predição
do índice de moabilidade (BWI), utilizando o algoritmo XG-
Boost Regressor e todo o conjunto de dados, sem segmen-
tações.

Os resultados obtidos para o conjunto de teste são os
seguintes:

• R2: 0,4440
• RMSE: 1,9305
• MAE: 0,9953

O desempenho preditivo foi inferior ao observado na var-
iável recuperação, com um coeficiente de determinação in-
dicando que apenas cerca de 44% da variância do BWI é
explicada pelo modelo. Esse resultado sugere que a variável
apresenta maior complexidade ou ruído, e que fatores rele-
vantes podem não estar totalmente representados nas variáveis
utilizadas.

Fig. 10. Desempenho do modelo global na predição do BWI: (à esquerda)
comparação entre valores reais e previstos; (à direita) distribuição dos resí-
duos.

Conforme mostra a Figura 10, as predições tendem a se
concentrar em uma faixa centralizada, com uma dispersão
considerável em relação à diagonal ideal. A distribuição dos
resíduos é razoavelmente simétrica, mas com caudas mais
alongadas em comparação ao modelo de recuperação, re-
forçando a maior variabilidade do fenômeno a ser modelado.

Esses resultados motivam a investigação de abordagens
alternativas, como a segmentação espacial por cluster, visando
capturar padrões mais locais que possam ser responsáveis
por comportamentos distintos do índice de moabilidade no
depósito.

Modelo Segmentado por K-means: Nesta abordagem, o
conjunto de dados foi previamente segmentado em clusters
por meio do algoritmo K-means, e um modelo preditivo foi
treinado separadamente para cada grupo. A ideia é capturar
padrões locais que possam ser perdidos em um modelo global.

Os resultados consolidados dos modelos treinados em cada
cluster foram:

• R2: 0,5505
• RMSE: 1,7475
• MAE: 0,9090
Comparando-se com o modelo global, observa-se uma mel-

hora consistente nos três indicadores. O aumento do coefi-
ciente de determinação indica que os modelos segmentados
foram capazes de capturar melhor as variabilidades do BWI,
provavelmente por se ajustarem a regiões estatisticamente mais
homogêneas.

Fig. 11. Desempenho do modelo segmentado por K-means na predição do
BWI. À esquerda: relação entre valores reais e previstos. À direita: histograma
dos resíduos.

A Figura 11 mostra uma distribuição de resíduos bem
centrada, com uma dispersão ligeiramente menor do que a
observada no modelo global. Isso reforça a hipótese de que



a segmentação introduzida pelo K-means contribui para um
ganho em especialização dos modelos locais.

Modelo Segmentado por Agglomerative Clustering: Por
fim, foi testada uma terceira abordagem com segmentação via
Agglomerative Clustering. Assim como na estratégia anterior,
um modelo foi treinado individualmente para cada cluster
identificado.

Os resultados agregados dos modelos segmentados foram:
• R2: 0,5546
• RMSE: 1,7396
• MAE: 0,9015
Esse modelo apresentou desempenho ligeiramente superior

ao segmentado por K-means, consolidando-se como a melhor
abordagem testada para a variável BWI. O ganho no R2 reflete
uma maior capacidade de explicação da variância local nos
dados.

Fig. 12. Desempenho do modelo segmentado por Agglomerative Clustering
na predição do BWI. À esquerda: comparação entre valores reais e previstos.
À direita: distribuição dos resíduos.

Na Figura 12, observa-se uma forte concentração de resí-
duos em torno de zero, com distribuição simétrica e caudas
estreitas. A dispersão no gráfico de predição também se
mostra reduzida, indicando previsões mais consistentes em
comparação às abordagens anteriores.

V. CONCLUSÃO

Desempenho na Predição da Recuperação

A Tabela II resume os resultados obtidos pelos três modelos
de regressão aplicados à variável Recuperação.

TABLE II
COMPARAÇÃO DOS MODELOS PARA A VARIÁVEL RECUPERAÇÃO

Modelo R2 RMSE MAE
Global 0,7941 1,6787 1,2331
Segmentado (K-means) 0,8057 1,6460 1,2092
Segmentado (Aglomerativo) 0,8086 1,6336 1,2035

Observa-se uma melhoria progressiva nos indicadores de
desempenho ao se adotar abordagens segmentadas por cluster.
O modelo com Agglomerative Clustering obteve o melhor de-
sempenho em todos os critérios, com ganhos discretos porém
consistentes em relação ao modelo global. Isso indica que a
segmentação permitiu uma especialização dos modelos locais,
que conseguiram capturar com maior precisão as variações
regionais da recuperação metalúrgica.

Desempenho na Predição do BWI

A Tabela III apresenta os mesmos indicadores para os
modelos voltados à predição do índice de moabilidade (BWI).

TABLE III
COMPARAÇÃO DOS MODELOS PARA A VARIÁVEL BWI

Modelo R2 RMSE MAE
Global 0,4440 1,9305 0,9953
Segmentado (K-means) 0,5505 1,7475 0,9090
Segmentado (Aglomerativo) 0,5546 1,7396 0,9015

Os ganhos com a segmentação são ainda mais evidentes na
predição do BWI. Enquanto o modelo global explicou apenas
cerca de 44% da variância da variável, os modelos segmenta-
dos atingiram coeficientes de determinação superiores a 55%.
Além disso, os erros (RMSE e MAE) foram consideravelmente
reduzidos.

Esses resultados sugerem que o BWI é uma variável mais
sensível a variações locais do depósito, e que a modelagem
segmentada consegue captar nuances que se perdem na abor-
dagem global.

Considerações Finais

A comparação entre os modelos globais e segmentados por
cluster evidencia os benefícios da regionalização na mod-
elagem de variáveis geometalúrgicas. As abordagens com
K-means e, especialmente, com Agglomerative Clustering
apresentaram desempenho superior em ambas as variáveis
analisadas.

A principal vantagem da segmentação é permitir que os
modelos se adaptem a regiões estatística e geologicamente
mais homogêneas, resultando em previsões mais acuradas e
confiáveis. Isso é particularmente importante em contextos de
planejamento de lavra e otimização de processos, onde de-
cisões baseadas em modelos preditivos impactam diretamente
os custos e a eficiência da operação mineral.
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