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Abstract—A seleção e otimização de modelos para previsão
de séries temporais é uma tarefa complexa que tradicionalmente
exige conhecimento especializado e esforço manual. Este trabalho
propõe e avalia o uso de algoritmo genético evolucionário em
conjunto com Large Language Models(LLMs). Para isso, três
abordagens foram desenvolvidas e comparadas: (i) um algoritmo
genético clássico, que utiliza operadores estocásticos de seleção,
crossover e mutação; (ii) um algoritmo genético com evolução
guiada por LLM com uma estratégia definida no prompt, onde
o LLM é responsável por gerar a população cada geração; e (iii)
algoritmo genético com evolução guiada por LLM com estratégia
livre. Também foram usados LLMs para gerar e corrigir o
código dos modelos de maneira eficaz. Os experimentos indicam a
capacidade dos LLMs de atuar como agente de evolução, obtendo
resultados próximos ao estado da arte para o dataset analisado.

I. INTRODUÇÃO

A modelagem de séries temporais é um dos problemas
centrais de diversas áreas, como economia, meteorologia,
transportes, tráfego, entre outras [1], [2]. Tradicionalmente,
são usadas técnicas de estatı́stica como ARIMA, baseado em
médias móveis autoregressivas, TBATS, com modelagem de
tendência, Holt-Winters, com suavização exponencial, mod-
elos vetoriais, entre outros [3]–[6]. Técnicas mais modernas
de aprendizado de máquina emergiram nas últimas décadas
com o avanço do poder computacional e das grandes bases de
dados, como XGBoost, LightGBM, Random Forest, LSTM,
TCN, GRU, além de outras abordagens recentes [7]–[10].

Escolher qual modelo utilizar dentre tantos disponı́veis
envolve alguns desafios, como o trade-off viés-variância, un-
derfitting e overfitting, a disponibilidade de dados e poder
computacional, além da complexa tarefa de seleção de fea-
tures, hiperparâmetros e a definição de esquemas de validação
cruzada temporal. Esse processo é de extrema importância,
uma vez que afeta diretamente a acurácia das previsões que
impactam na tomada de decisão. Com isso, pequenos aumen-
tos na acurácia de um modelo podem trazer ganhos a diversos
domı́nios [11]–[13].

Esse trabalho propõe um algoritmo genético evolucionário
em conjunto com Large Language Models (LLMs) para gerar
modelos de previsão de séries temporais. O problema central
é determinar se a abordagem evolucionária é eficaz para
obter bons modelos por meio de código gerado por LLMs.
Além disso, também avalia a eficácia dos LLMs como guia
para a evolução em comparação com a evolução puramente
estocástica.

II. REFERENCIAL TEÓRICO

A. Previsão de Séries Temporais

A previsão de séries temporais envolve modelar sequências
de dados ordenados no tempo para estimar valores futuros.
Métodos clássicos incluem modelos estatı́sticos como ARIMA
e Exponential Smoothing. Com o avanço do aprendizado
de máquina, surgiram abordagens baseadas em árvores de
decisão, redes neurais recorrentes e arquiteturas de atenção
temporal. Essas técnicas requerem seleção de features, ajuste
de hiperparâmetros e definição de esquemas de validação
cruzada temporal (time-series cross-validation). [3], [11]

Paliari et al. [14] demonstraram que modelos de aprendizado
de máquina, especificamente LSTM e XGBoost, tendem a
superar o método estatı́stico tradicional ARIMA na previsão
de séries temporais financeiras de curto prazo. Os resultados
indicaram a superioridade geral do LSTM na redução de
métricas de erro, com o ARIMA mostrando-se mais eficaz
apenas em cenários especı́ficos de valores nominais muito
baixos.

B. Validação Cruzada em Séries Temporais

Em séries temporais, os dados não são independentes: o
valor atual depende de passos anteriores. Por isso, o conjunto
de treino deve sempre preceder o de validação/teste no tempo,
evitando vazamento de informação futura para o modelo. As-
sim, não é possı́vel utilizar a validação cruzada tradicional(k-
fold), pois não é permitido embaralhar os dados e a validação
cruzada tradicional alteraria a ordem e a dependência temporal



dos dados. A solução adequada é a validação cruzada temporal
[15], utilizando estratégias de janela deslizante(rolling win-
dow) e janela expansiva(expanding window), que garante que
o modelo sempre seja avaliado em dados futuros em relação
ao perı́odo de treinamento.

C. Geração de Código via LLMs

Large Language Models(LLMs), como GPT-4 [16] e GPT-
5, se mostraram efetivos em tarefas de processamento de
linguagem natural, planejamento e geração de código. Os
modelos de linguagem são capazes de gerar trechos de código-
fonte em linguagens como Python, importar bibliotecas, definir
funções e entender o contexto. Além disso, os modelos podem
ser utilizados para limpeza dos dados, seleção de features
e divisão treino/teste. Instruções detalhadas podem guiar o
modelo e melhorar significativamente os resultados. [17]–[20]

D. Algoritmos Evolucionários

Algoritmos genéticos são usados para otimização. Uma
população de soluções candidatas(indivı́duos) participa de
um processo de evolução baseado na teoria da evolução de
Darwin. A população passa por um processo de seleção,
recombinação e mutação e cada indivı́duo é avaliado por uma
função de avaliação(fitness) que quantifica o quão bem um
indivı́duo resolve um determinado problema. A cada geração,
os indivı́duos mais aptos(com melhor fitness) têm maior prob-
abilidade de transmitir os seus genes(partes da solução) para
a próxima geração. [21]

A combinação entre algoritmos evolucionários e LLMs pode
ser extremamente poderosa. Por um lado, os algoritmos evolu-
tivos podem aprimorar os resultados gerados pelo LLM através
da engenharia de prompt. Por outro lado, o LLM pode utilizar
seu grande conhecimento dos mais variados domı́nios para
conduzir buscas mais inteligentes nos algoritmos genéticos,
atuando como operadores evolutivos [22].

E. Algoritmos Evolucionários e LLMs

A combinação de algoritmos evolucionários e LLMs se
mostrou eficaz para geração de funções de recompensa para
aprendizado por reforço. Em [23] foi proposto o algoritmo
EUREKA para design de recompensas que utiliza parte do
código-fonte e a descrição da tarefa como contexto para um
LLM(GPT-4). Cada função de recompensa é utilizada para
o treinamento de um modelo de aprendizado por reforço e as
métricas do treinamento são utilizadas para guiar um processo
de busca evolucionária. Foram obtidos resultados de nı́vel
humano no design de funções de recompensa.

III. METODOLOGIA

Este trabalho propõe e avalia uso de algoritmos evolu-
cionários em conjunto LLMs para otimizar a geração de mod-
elos de previsão de séries temporais, usando código gerado
por LLMs. Foi definido o esquema genético, onde os genes
de cada indivı́duo são: o modelo, os hiperparâmetros e as
features. Após a definição de uma população de indivı́duos
de acordo com o algoritmo genético, um prompt é construı́do

através de um template fixo para o LLM gerar uma função
train_and_predict em Python que implementa exata-
mente o modelo, as features e os hiperparâmetros definidos
pelos genes de cada indivı́duo e retorna o valor da função
de fitness definida. A avaliação de cada modelo de previsão,
definida pela medida de fitness do indivı́duo, é utilizada para
definir as próximas gerações.

A arquitetura do sistema está ilustrada na Fig. 1, composta
por um Gerador de População(GPT-5.1), que define os in-
divı́duos de cada população, LLMs Geradores de Código(GPT-
5.1-Codex) e LLMs Corretores de Código(GPT-5.1-Codex).
O prompt utilizado para geração de código está exibido na
Fig. 2 e caso o código gerado pelo LLM Gerador de Código
apresente algum erro, o LLM Corretor de Código gera novo
código, usando o prompt exibido na Fig. 3, recebendo o código
que apresentou erro e a mensagem de erro gerada.

Fig. 1. Arquitetura do sistema

Fig. 2. Prompt para geração de código



Fig. 3. Prompt para geração de código

Para validar a proposta, foram desenvolvidas e exploradas
três abordagens distintas: (i) algoritmo genético clássico, onde
o processo evolucionário é guiado pela aleatoriedade; (ii)
algoritmo de evolução guiada por LLM, com estratégia de
evolução definida no prompt, onde o LLM define a população
de cada geração; e (iii) algoritmo de evolução guiada por
LLM, com estratégia de evolução livre para o LLM definir
a população de cada geração.

Em todas as abordagens, cada indivı́duo é testado de acordo
com um esquema de validação cruzada para séries temporais
de Expanding Window(TimeSeriesSplit) e o fitness final
do indivı́duo é a média da métrica de todos folds.

A. Abordagem (i): Algoritmo Genético Clássico

No algoritmo genético clássico, a população é definida de
acordo com a aleatoriedade. A população inicial é gerada
através de sorteios de modelo e features, enquanto os hiper-
parâmetros de cada indivı́duo são sorteados dentro de um
espaço de busca pré-definido para cada hiperparâmetro de
cada modelo. Os indivı́duos são selecionados para a próxima
geração através de torneio, onde dois indivı́duos são escolhidos
aleatoriamente e o de melhor fitness é selecionado. Seleciona-
dos os indivı́duos, é realizada a etapa de crossover de features,
onde é definido um ponto de corte aleatório, como ilustrado
no exemplo a seguir:

ind1["features"] = [1,1,1,1]
ind2["features"] = [0,0,0,0]
ponto de corte: 2
resultado:
ind3["features"] = [1,1]+[0,0]=[1,1,0,0]
ind4["features"] = [0,0]+[1,1]=[0,0,1,1]

Além da seleção e crossover, também podem ocorrer

mutações de duas formas: (i) ativação ou desativação de uma
feature aleatória ou (ii) escolha de um novo valor aleatório
para um hiperparâmetro, dentro do intervalo permitido.

B. Abordagem (ii): LLM como guia para evolução, com
estratégia definida no prompt

No algoritmo genético guiado por LLM, a população não é
definida de forma estocástica, mas pelo LLM. Ao invés de re-
alizar seleção e definir probabilidades de crossover e mutação
via código, a cada geração, o prompt da Fig. 4 é criado a
partir de um template para que o LLM gere toda a população
de indivı́duos, atuando como um guia para a evolução. Esse
prompt contém a lista de modelos e features disponı́veis,
o indivı́duo de melhor fitness obtido até o momento e os
melhores indivı́duos da geração anterior com seus respectivos
genes. Como ilustrado na Fig. 5, na primeira geração é pedido
ao LLM para explorar e diversificar o espaço de busca,
enquanto nas próximas gerações é pedido para utilizar uma
estratégia que combine elitismo, crossover e exploração, sem
restringir valores ou probabilidades para cada um, dando mais
autonomia e liberdade para o LLM guiar o processo evolutivo.
Assim como nas outras abordagens, assim que a população
é definida, um outro prompt é construı́do e enviado para
um outro LLM gerar a função train_and_predict que
retorna os valores preditos para serem usados na validação
cruzada temporal.

C. Abordagem (iii): LLM como guia para evolução, com
estratégia definida pelo LLM de forma livre

Nessa abordagem, o LLM atua como guia para evolução,
definindo os indivı́duos de cada população de forma livre. A
Fig. 6 ilustra como o LLM é instruı́do a escolher de forma livre
elitismo, crossover e exploração. Assim como na Abordagem
(ii), o LLM também recebe a lista de modelos e features
disponı́veis, o indivı́duo de melhor fitness até o momento e os
melhores indivı́duos da geração anterior com seus respectivos
genes.

IV. EXPERIMENTOS

A. Dataset e pré-processamento

Para validação e implementação, foi utilizado o dataset
Appliances Energy Prediction [24], com 19735 linhas de
leituras de consumo de energia a cada 10 minutos com
condições meteorológicas externas de uma estação próxima.
Para preparar os dados para a modelagem, foi realizado um
pré-processamento com engenharia de features para fornecer
mais informação aos modelos. Foram criadas novas features
de forma automatizada:

• Features de Lag: valores defasados da variável alvo
criados para diversos intervalos(1, 3, 7, 24, 168 perı́odos),
visando capturar a autocorrelação da série.

• Features de Janela Móvel: estatı́sticas como média, desvio
padrão e valor máximo foram calculadas sobre janelas
deslizantes de diferentes tamanhos(3, 7, 24 perı́odos).

• Features Temporais: foram extraı́das a hora do dia e o
dia da semana a partir da data. O mês foi decomposto em



Fig. 4. Prompt de geração de população

componentes seno e cosseno para capturar a ciclicidade
sazonal de forma contı́nua.

Para avaliar o desempenho e a eficácia das duas abordagens
propostas, foi definido o Root Mean Squared Error(RMSE)
como métrica de fitness. O artigo que publicou o dataset
[24], [25] obteve RMSE 66.65 utilizando validação cruzada
de 10 folds. Assadian, Cameron Francis, and Francis Assadian
[26] obtiveram RMSE 59.61 utilizando Extra Trees Regressor,
62.96 para Random Forest e 63.86 para XGBoost também
utilizando validação cruzada de 10 folds.

Foi definido um conjunto de modelos disponı́veis: Arima,
Holt-winters, DecisionTreeRegressor, XGBoost, KNRegressor,
SARIMAX, RandomForestRegressor, LightGBM, SVR, Cat-
Boost, MLPRegressor, Prophet, TBATS, NBEATS, Extra-
TreesRegressor, LGBMRegressor, CatBoostRegressor, XGBRe-
gressor, ElasticNet, TCN, RNN, LSTM, GRU, Temporal-
FusionTransformer, VAR, BayesianRidge, StackingRegressor,
KalmanFilter, ETS, DeepAR.

Durante a implementação, houve suspeita de que o LLM
estaria utilizando de informação prévia do Dataset utilizado,
uma vez que está disponı́vel publicamente na internet. Com
isso, foi implementado um processo de anonimização das
features, através da criação de um mapa que converte cada

Fig. 5. Estratégia de geração de população definida no prompt

Fig. 6. Estratégia livre de geração de população

nome de feature original para um rótulo genérico, como F01,
F02. Entretanto, após a anonimização dos nomes das colunas
não foi constatada mudança no comportamento do LLM.

B. Resultados

Foram executados experimentos usando as 3 abordagens,
com 20 indivı́duos por geração e utilizando validação cruzada
de 10 folds. A Fig. 7 mostra o gráfico de convergência
do abordagem (i), algoritmo genético clássico estocástico,
que obteve RMSE 64.51 na 5a geração com o algoritmo
CatBoostRegressor. Já as Figs. 8 e 9 retratam os gráficos de
convergência das abordagens (ii) e (iii), com RMSE 63.38
na 7a geração e RMSE 63.58 na 9a geração, respectivamente,
ambos com XGBoost.



Fig. 7. Abordagem (i): Convergência do algoritmo genético clássico

Fig. 8. Abordagem (ii): Convergência do algoritmo genético com LLM como
guia para evolucão, com estratégia definida no prompt

C. Explicabilidade

Foi realizada uma análise dos indivı́duos gerados nas
populações de cada experimento. Analisando os indivı́duos e
suas métricas de cada abordagem, nota-se que a abordagem
(i) converge cedo e a média de fitness dos invidı́duos diminui
e também converge para próximo do mı́nimo, enquanto as
abordagens (ii) e (iii) também convergem cedo, mas a média
de cada geração oscila, indicando que o LLM está tentando
explorar o espaço de busca.

Na abordagem (i), estocástica, como não há nenhuma in-
teligência guiando a escolha de features ou a calibração dos
hiperparâmetros, a evolução tende a recombinar cegamente
partes de soluções que não tem fitness tão bom, fazendo com
que certos padrões de features e modelos se tornem domi-
nantes não por serem os melhores, mas por serem herdados
com frequência. Isso leva a uma convergência prematura: a
população evolui em poucos modelos e muitas variações são
apenas clones com pequenas mudanças numéricas, podendo
levar o algoritmo a ficar preso em um mı́nimo local. Essa
convergência prematura pode ser observada na Fig. 7, onde a
média de fitness de cada geração(linha vermelha) se aproxima
cada vez mais do ótimo da geração(linha azul).

Com a estratégia de evolução definida no prompt da abor-

Fig. 9. Abordagem (iii): Convergência do algoritmo genético com LLM como
guia para evolução, com estratégia definida pelo LLM de forma livre

dagem (ii) (30% elitismo, 30% crossover, 40% exploração), o
LLM transformou uma população inicial muito diversa em
um conjunto bem concentrado de árvores/GBMs e alguns
modelos sequenciais apoiados em um conjunto estável de
features(lights + RH 2 ou RH 6 + T3 + lags + rolling stats +
tempo), com pouca exploração nas gerações finais, indicando
que a evolução encontrou um padrão ótimo que o LLM passou
a explorar quase exclusivamente. Diferente da abordagem (i),
o LLM priorizou crossover entre modelos da mesma classe.

Por fim, na abordagem (iii) com estratégia livre, o LLM
também começou a evolução com uma população inicial
muito diversa e evoluiu para o mesmo conjunto de modelos
de ensembles de árvore (ExtraTrees, RandomForest, LGBM,
XGBoost) e modelos lineares regularizados(ElasticNet e
BayesianRidge), sempre usando o conjunto de features: lags,
estatı́sticas de janelas e sazonalidade temporal. Em todas as
gerações há algum LSTM/GRU/TCN/NBEATS/DeepAR/TFT,
mas poucos por geração, gerados como exploração do espaço
de busca. Também aparecem em todas as gerações modelos
clássicos de séries, como ARIMA, SARIMAX e Holt-Winters,
começando com poucas variáveis e expandindo o número de
variáveis ao longo das gerações. O LLM aprendeu que os
melhores modelos tem lag 1 e frequentemente utiliza outros
lags, como 3,7,24. Também utiliza estatı́sticas rolling mean,
hora do dia, dia da semana e seno e cosseno do mês. É possı́vel
perceber claramente que o LLM utilizou elitismo, mutação de
hiperparâmetros, crossover de features e alguns modelos novos
aleatórios.

V. CONCLUSÃO

Este trabalho investigou a integração de LLMs com algo-
ritmo genético evolucionário para a otimização de modelos
de previsão de séries temporais. Os experimentos realizados
compararam uma abordagem de algoritmo genético clássico,
puramente estocástica, com duas abordagens guiadas por
LLM, uma com estratégia de evolução definida no prompt
e outra com estratégia livre, utilizando o dataset Appliances
Energy Prediction.



A análise qualitativa dos indivı́duos de cada geração indica
que os LLMs podem ter alguma vantagem em relação à
abordagem puramente estocástica. A abordagem estocástica
pode convergir precocemente a um mı́nimo local, pois a
aleatoriedade pode levar alguns padrões de modelos e features
a se tornarem dominantes por serem herdados com frequência.
Enquanto na abordagem com estratégia definida no prompt,
o LLM foi instruı́do com valores percentuais de elitismo,
crossover e exploração e ainda assim não atuou como um
operador de evolutivo cego: o LLM identificou e preservou um
conjunto de features(como lags e estatı́sticas de janela móvel)
e realizou crossovers e mutações que faziam mais sentido
do ponto de vista de arquitetura dos modelos, mantendo
também uma taxa de mutação(exploração) de modelos. Por
fim, na abordagem onde o LLM teve liberdade para definir
sua própria estratégia de evolução, também foi identificado
um conjunto de features e o LLM utilizou elitismo, crossover
de hiperparâmetros e mutação de hiperparâmetros e modelos.

Foi realizada a anonimização das features, que não alterou
o comportamento do LLM, sugerindo que o modelo conseguiu
orientar as decisões evolutivas com base na estrutura dos dados
e nas métricas de desempenho, e não por conhecimento prévio
sobre o dataset.

A combinação entre algoritmo genético evolucionário e
LLM foi capaz de obter resultados próximos ao estado da
arte para o dataset analisado. Além disso, os resultados in-
dicam que os LLMs atuais possuem capacidade suficiente para
gerenciar o trade-off entre exploração(exploration) e aproveita-
mento(exploitation) de forma autônoma, sem a necessidade de
definir taxas de mutação ou crossover. Por fim, a arquitetura
proposta de geração e correção de código pelos LLMs se
mostrou eficaz para modelos de previsão de séries temporais
em Python.
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