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Resumo—A doença da dengue continua gerando impactos
sociais e econômicos altamente negativos no Brasil e no mundo.
Controlar o seu principal vetor, o mosquito Aedes aegypti, e
entender sua dinâmica populacional são partes fundamentais
do combate à doença. Utilizamos modelos de regressão para
avaliar como variáveis meteorológicas influenciam a abundância
dos mosquitos (estimada através de vigilância entomológica), e
utilizamos análise de correlação para avaliar o relacionamento
dessa abundância com a incidência de dengue, em diferentes
municı́pios do estado do Espı́rito Santo. Por fim, desenvolvemos
diferentes modelos epidemiológicos com os dados de dengue, de
um mais simples a um mais complexo, incluindo a abundância
do vetor em sua formulação, para comparar a qualidade de
ajuste aos dados dos diferentes modelos. Resultados da regressão
revelam maior influência da temperatura na abundância do vetor,
e uma inconsistência dos modelos durante anos distintos de
observação. A análise de correlação apontou um relacionamento
fraco ou contraintuitivo; seguindo essa linha de raciocı́nio, os
modelos epidemiológicos não mostraram vantagem ao incluir
a infestação do vetor em sua formulação, mas alcançaram
bons resultados ao incluir temperatura. O estudo destaca a
importância da vigilância entomológica contı́nua para o enten-
dimento da dinâmica populacional do mosquito, ao passo que o
seu relacionamento com a incidência de dengue segue complexo,
sugerindo que é um dado sozinho insuficiente para a avaliação
de risco de dengue ou a criação de modelos de predição.

Index Terms—Dengue, Monitoramento Entomológico, Análise
de dados, Machine Learning, Regressão, Correlação, Modelos
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I. INTRODUÇÃO

As arboviroses, doenças transmitidas principalmente por
artrópodes, como a dengue, permanecem uma grande ameaça
à saúde pública do paı́s, incorrendo em custos anuais diretos
e indiretos que ultrapassam bilhões [1]. Paralelamente, a
presença do vı́rus da dengue, antes associada principalmente
às áreas tropicais e subtropicais do planeta, tem rapidamente
tomado proporções globais, por conta de fatores que incluem
mudanças climáticas e migrações de pessoas [2].

Medidas de prevenção e controle da dengue abrangem, além
da vacinação, o controle vetorial pela aplicação de larvicidas e
inseticidas e pela remoção de criadouros (controle mecânico),
e também o monitoramento da população de mosquitos (moni-
toramento/vigilância entomológica), incluindo levantamentos

amostrais em imóveis e inspeção de armadilhas [3]. Tal medida
produz indicadores da presença, distribuição e densidade dos
insetos no tempo e no espaço, incluindo ı́ndices larvais e de
pupas, ı́ndices de ovos e de mosquitos adultos.

Acompanhando a alta disponibilidade de dados históricos
de vigilância, a modelagem matemática têm tornado-se cada
vez mais relevante em diversos estudos sobre a variação
populacional do mosquito Aedes aegypti, o principal vetor
da dengue. A forte influência de variáveis meteorológicas no
desenvolvimento e sobrevivência do vetor e na transmissão da
dengue (influência da temperatura em processos fisiológicos
importantes do mosquito e tempo de incubação do vı́rus;
necessidade de água para ovoposição e desenvolvimento larval
e pupal; necessidade de umidade para sobrevivência do adulto
e do ovo; etc) [4] [5] motiva o desenvolvimento de modelos
de regressão para entender o relacionamento entre o nı́vel
de infestação e os dados meteorológicos. Dessa maneira,
trabalhos propõem, por exemplo, soluções para a predição de
infestações futuras e avaliação de risco da doença, de forma a
habilitar medidas de controle antecipadas e eficientes [6] [7].

Por outro lado, a alta disponibilidade de dados históricos
de casos de dengue possibilita o surgimento de modelos
epidemiológicos compartimentais diversos [8]. Modelos com-
partimentais simulam a disseminação de uma doença em uma
população por meio da divisão dos indivı́duos em comparti-
mentos - por exemplo, em indivı́duos suscetı́veis a uma doença
(S) e infectados (I) - e da criação de fórmulas que especificam
a taxa de transição entre esses compartimentos a cada intervalo
de tempo. Tais modelos têm sido utilizados para diversos fins,
como para a avaliação do impacto de medidas de controle
e/ou vacinação na evolução da doença [9] [10], e para a
avaliação de riscos de infecção de indivı́duos em contexto de
imigração [11].

No entanto, a relação entre os ı́ndices de vetor e os casos
de dengue permanece mal compreendida pela literatura [12],
apesar de que, como no caso do primeiro, trabalhos explo-
raram com sucesso o uso de variáveis meteorológicas para o
desenvolvimento de modelos de incidência de dengue [13].
Essa barreira é provavelmente um motivo pelo qual, até onde
sabemos, poucos trabalhos consideram dados de vigilância



entomológica em seus modelos epidemiológicos compartimen-
tais, como [14].

Nesse contexto, este trabalho tem os seguintes objetivos:
• Criar modelos de regressão com dados de vigilância

entomológica (ı́ndice de vetor) e meteorológicos, a partir
de dados de diversas cidades do Estado do Espı́rito
Santo. Então, avaliar o relacionamento entre as variáveis
e comparar os parâmetros dos modelos de locais diferen-
tes e de perı́odos (anos) distintos. Também avalia-se a
consistência dos modelos durante os anos;

• Avaliar a correlação entre os casos de dengue e o ı́ndice
de vetor para os mesmos locais e perı́odos, para verificar
se a tendência descrita na literatura mantêm-se;

• Criar três modelos epidemiológicos com dados de casos
de dengue de algumas cidades, de um mais simples a um
mais complexo que considera o ı́ndice de vetor em sua
formulação, e compará-los segundo seu ajuste aos dados
e parâmetros.

O restante do trabalho está organizado da seguinte forma:
a seção II apresenta conceitos e parte da literatura relevantes
ao trabalho; a seção III esclarece a metodologia utilizada no
trabalho; a seção IV apresenta os resultados, que são discutidos
na seção V; a seção VI conclui o trabalho; e a seção VII
contém os agradecimentos.

II. REFERENCIAL TEÓRICO

Modelos de regressão permitem quantificar a relação de uma
variável dependente (resposta) com variáveis independentes
(preditoras), por meio dos seus parâmetros (coeficientes). A
Equação (1) mostra, por exemplo, um modelo de regressão
linear multivariado: o modelo calcula coeficientes βi para cada
uma das xi variáveis selecionadas à medida que aproxima
o valor esperado da resposta (Y ) como uma função linear
das variáveis, e também calcula o intercepto (β0), o valor
da função quando todas as variáveis são 0. Os coeficientes
tornam modelos de regressão mais interpretáveis do que outros
modelos supervisionados, como árvores de decisão. Trazendo
para o contexto do trabalho, cada uma das variáveis xi pode
ser um valor meteorológico, como temperatura ou nı́vel de
chuva, e a resposta (Y ), o nı́vel de infestação do vetor naquele
momento.

E[Y ] = β0 + β1x1 + β2x2 + · · ·+ βnxn (1)

Trabalhos têm utilizado modelos de regressão das mais di-
versas formas, para os mais diversos objetivos, tirando proveito
da forte relação amplamente documentada entre o desenvolvi-
mento e sobrevivência dos mosquitos, transmissão de dengue,
e os fatores do clima, abordada na seção I. Os autores de [6],
por exemplo, desenvolveram modelos com dados da cidade de
Porto Alegre, Rio Grande do Sul, para descrever a dinâmica
temporal da população de mosquitos e a relação com casos
de dengue. Foi aplicado um modelo aditivo generalizado, no
qual, em vez de coeficientes, as variáveis independentes são
relacionadas à resposta através de funções não lineares (f(xi)),
permitindo maior flexibilidade. Os fatores mais relevantes para

a predição do ı́ndice de densidade do vetor foram variáveis
de temperatura mı́nima, umidade e o próprio ı́ndice medido
na semana anterior, enquanto a precipitação, por ser bem
distribuı́da durante o ano no clima subtropical da cidade, não
foi um fator muito relevante. Utilizando um modelo logı́stico,
também foi apontado um aumento subsequente no número
de casos de dengue, quando havia aumento na densidade de
vetores.

Já o trabalho [7] utilizou dados de vigilância da cidade
de Vitória, Espı́rito Santo, mas construiu modelos lineares
generalizados, nos quais a variável resposta (Y ) é relacio-
nada às variáveis independentes por algum tipo de função
de ligação (g(E[Y ])). Os autores buscaram desenvolver um
modelo de regressão de qualidade comparável a modelos
supervisionados mais complexos, assim mantendo a vantagem
da interpretabilidade, e empregaram dados meteorológicos
diversos, incluindo dados de vegetação, extraı́dos tanto de
uma zona urbana quanto de uma zona rural. O trabalho
alcançou bons resultados, e concluiu uma maior influência
positiva da umidade sobre a infestação de vetores, seguida
por temperatura e um efeito adverso da precipitação, possivel-
mente pela competição das armadilhas com outros locais em
época de chuva. Os autores de [15], por sua vez, compararam
diversos ı́ndices vetoriais, incluindo de larvas, ovos e adultos, e
tipos de armadilhas diferentes, em relação à sensibilidade dos
valores às variações meteorológicas, para identificar aqueles
que melhor capturam o padrão sazonal da população dos
mosquitos. Foram consideradas 5 cidades de estados bem
distintos do paı́s, e foram construı́dos modelos para cada tipo
de ı́ndice e cidade. O estudo concluiu uma grande influência
da temperatura na sazonalidade da população de mosquitos
e uma maior qualidade dos ı́ndices associados às armadilhas,
especialmente os de densidade e positividade de adultos.

Nesse contexto, esse trabalho tem como primeiro objetivo
criar modelos de regressão linear com dados de vigilância
entomológica e meteorológicos de cinco municı́pios do estado
do Espı́rito Santo, para avaliar o relacionamento entre as
variáveis e comparar os resultados. Dada a disponibilidade de
dados de diversos anos, e, até onde sabemos, o fato de que
os trabalhos geralmente não consideram a consistência dos
modelos durante longos perı́odos de tempo, também avaliamos
a consistência dos resultados, ajustando assim os modelos
independentemente para anos distintos. Adicionalmente, como
segundo objetivo, avaliamos a correlação entre os casos de
dengue e os dados de densidade de vetor, para verificar se
a tendência de baixa correlação mantêm-se, aproveitando a
grande quantidade de dados disponı́veis.

O terceiro e último objetivo, como resumido na Introdução,
consiste em desenvolver modelos epidemiológicos comparti-
mentais, e compará-los segundo sua qualidade de ajuste aos
dados e os valores de seus parâmetros.

Modelos epidemiológicos são representações da epidemio-
logia da transmissão de doenças e seus processos associados.
Entre diversas aplicações, os modelos servem para a análise
dos processos especı́ficos de doenças, a geração de hipóteses,
a avaliação do impacto econômico de doenças e da efetividade



de estratégias de prevenção ou controle. Eles podem ser
classificados, por exemplo, em relação à certeza, divididos
entre determinı́sticos e estocásticos; modelos determinı́sticos
utilizam valores fixos como parâmetros, como, por exemplo,
uma taxa fixa de natalidade, e geram um resultado esperado;
modelos estocásticos implementam uma variabilidade natural,
gerando diversos resultados possı́veis [16].

Os modelos compartimentais dividem a população de estudo
em compartimentos, pelos quais indivı́duos transitam a cada
intervalo de tempo. Um dos mais simples nessa categoria é o
modelo endêmico clássico [8] (Figura 1) também conhecido
por modelo SIR com dinâmica vital (por incluir a dinâmica
de nascimentos e mortes). Especifica-se que indivı́duos podem
estar suscetı́veis a uma doença (compartimento S), infectados
(e com capacidade de infectar outros - compartimento I)
ou recuperados/imunizados (compartimento R). As transições,
ilustradas na Figura 1, são descritas pelas Equações (2) - (4).
O termo β I

N é denominado força de infecção, e corresponde
à taxa com a qual indivı́duos suscetı́veis tornam-se infectados.
O parâmetro β corresponde à taxa de transmissão, indivı́duos
recuperam-se com uma taxa de recuperação γ, e assume-se
uma taxa de nascimentos e mortes constante µ, de tal forma
que a população total N = S + I + R permanece constante.
Além disso, indivı́duos infectados podem infectar indivı́duos
suscetı́veis imediatamente, e não há perda de imunidade
(transições de R para outros compartimentos). A Figura 2
exibe um exemplo hipotético de evolução do modelo SIR, dado
um conjunto de parâmetros iniciais N,S(0), I(0), R(0), β, µ
e γ, em que há um pico de infecções (surto) e depois uma
normalização.

Há diversos outros modelos na literatura com premissas
e fórmulas mais realistas. O modelo SEIR, por exemplo,
inclui, antes de I , o compartimento de indivı́duos expostos
(E), isto é, infectados mas não capazes ainda de transmitir
o patógeno. Nesse caso, considera-se como um parâmetro
adicional o perı́odo de latência da doença: o intervalo de tempo
entre o momento que um indivı́duo é infectado e o momento
quando torna-se infeccioso. É importante notar que, de forma
geral, a presença em E ou em I não distingue se um indivı́duo
possui sintomas [17]; indivı́duos expostos geralmente são
assintomáticos ou fracamente sintomáticos, mas podem haver
indivı́duos infecciosos assintomáticos; a situação é ainda mais
complexa visto que indivı́duos recuperados (e não infecciosos)
podem permanecer sintomáticos por um tempo, como no caso
do vı́rus da gripe. O perı́odo para a aparição de sintomas desde
a infecção é denominado perı́odo de incubação.

Figura 1. Modelo endêmico clássico (SIR).

dS

dt
= µN − β

SI

N
− µS, (2)

dI

dt
= β

SI

N
− γI − µI, (3)

dR

dt
= γI − µR, (4)

Figura 2. Exemplo de evolução do modelo SIR.

No caso de doenças infecciosas transmitidas por vetores,
como a dengue, modelos mais simples como o SIR ou o
SEIR podem não ser suficientes. Assim, adotam-se com-
partimentos adicionais para os vetores, e a força de infecção
ocorre em dois sentidos (humano - vetor e vetor - humano).
Tais modelos são baseados no famoso modelo de Ronald Ross
e George Macdonald (Ross-Macdonald) [18], desenvolvido
inicialmente para a malária. O modelo SIR−SI (Figura 3 e
Equações (5) - (9)) é um exemplo deles. Tal modelo têm sido
adotado em diversos trabalhos sobre dengue, como [9], [10]
e [19]; por outro lado, também pode haver aplicação do
modelo mais simples SIR, considerando de forma implı́cita a
dinâmica vetorial, geralmente para comparação dos resultados,
como em [9] e [19].

Figura 3. Modelo com dinâmica hospedeiro-vetor SIR-SI.



dSh

dt
= µhNh − βvh

ShIv
Nh

− µhSh, (5)

dIh
dt

= βvh
ShIv
Nh

− γhIh − µhIh, (6)

dRh

dt
= γhIh − µhRh, (7)

dSv

dt
= µvNv − βhv

SvIh
Nh

− µvSv, (8)

dIv
dt

= βhv
SvIh
Nh

− µvIv, (9)

O trabalho [9] utilizou dados de casos de dengue do
estado de Minas Gerais, para avaliar o impacto de métodos
diversos de controle vetorial (inseticidas, larvicidas e controle
mecânico) na curva de casos da doença. Foram adotados
o modelo mais simples SIR, o modelo SIR − SI e uma
versão modificada do SIR − SI , incluindo compartimentos
para as fases de ovo, larva e pupa. Os autores empregaram
uma taxa de transmissão (β) variável, dependente de fatores
meteorológicos; como será explicado na seção III-D, nós
utilizamos uma abordagem similar. Em conclusão, o controle
mecânico foi o mais eficaz, embora os outros métodos também
obtiveram resultados satisfatórios.

O trabalho [19], por sua vez, aplicou os modelos SIR e
SIR − SI em casos de dengue hemorrágica na Tailândia,
implementando um fator de probabilidade da complicação,
de forma a verificar o impacto das diferenças de modelagem
em relação à qualidade de ajuste aos dados e aos parâmetros
descobertos. Foram encontradas estimativas de parâmetros
concordantes com a literatura a partir dos dois modelos e uma
performance superior do modelo mais simples SIR. Assim,
concluiu-se que a complexidade adicional do segundo modelo
pode não ser necessária.

Por fim, o trabalho [14] procurou unir dados de casos
de dengue com dados de vigilância entomológica, por meio
de uma modelagem mais complexa (SEIRS − SEI), que
ainda considerou a possibilidade do perı́odo de latência da
doença exceder o tempo de vida do mosquito. Os autores
também incluı́ram os quatro sorotipos da dengue como com-
partimentos diferentes, enquanto muitos trabalhos não fazem
essa separação. O modelo foi utilizado para avaliar o efeito
do controle vetorial implementado em diferentes perı́odos
na curva da doença, e foi aplicado em dados da cidade de
Vitória, Espı́rito Santo. Foi encontrado o maior impacto da
implementação em perı́odos com baixo número de casos e
menor quantidade de mosquitos, quando eles já representavam
um gargalo para a disseminação da doença, destacando a
importância de medidas de controle de longo prazo, inclusive
em épocas de baixo número de casos de dengue.

Nesse contexto, recapitulando o último objetivo, exercita-
mos o uso de três modelos epidemiológicos compartimentais
com os dados disponı́veis, considerando, como feito em alguns
trabalhos, modelos mais simples a mais complexos, buscando
por fim incluir o ı́ndice de vetor como fator. Assim, analisamos

a diferença da qualidade de ajuste aos dados e dos valores de
parâmetros descobertos.

III. METODOLOGIA

Esta seção apresenta as etapas realizadas para atingir os
objetivos do trabalho, baseadas em passos clássicos de uma
análise exploratória de dados: seleção, pré-processamento
e transformação dos dados (seção III-A) e modelagem
(seções III-B, III-C e III-D), enquanto a apresentação e a
interpretação dos resultados são reservadas, respectivamente,
às seções IV e V.

A. Seleção, Pré-processamento e Transformação dos Dados

Dados de Vigilância Entomológica: Selecionamos dados
de capturas semanais de armadilhas de fêmeas de Aedes
aegypti dos anos de 2017 a 2019 de cinco municı́pios no
Estado do Espı́rito Santo: Vitória, Vila Velha, Afonso Cláudio,
Linhares e Ecoporanga (Figura 4). A seleção buscou um
balanceamento entre altas amostragens semanais com pouca
variância, diversidade geográfica, completude dos dados de
capturas e completude dos dados meteorológicos dos mu-
nicı́pios, que serão tratados à frente. Vila Velha e Vitória,
apesar de sua proximidade, foram ambas selecionadas por
conta da alta taxa de amostragem de armadilhas e para permitir
a comparação de resultados de locais próximos.

Os dados foram-nos providos pela empresa Ecovec1, que
implementa o programa de vigilância entomológica MI-Aedes,
anteriormente conhecido por MI-Dengue, em muitos Estados
do paı́s desde 2005. O programa monitora semanalmente
armadilhas grudentas de mosquitos (MosquiTRAP®) proje-
tadas para fêmeas de Aedes aegypti grávidas, que precisam
alimentar-se de sangue para desenvolver seus ovos e são os
principais vetores (e o único entre os dois sexos) do vı́rus
da dengue [20]. Calculamos, para cada municı́pio, o ı́ndice
de densidade “Índice Médio de Fêmeas de Aedes” (IMFA)
- a média de capturas por armadilha por semana - para os
modelos de regressão, para a análise de correlação e para
os modelos epidemiológicos, já que o indicador tem sido
utilizado para avaliação de risco de transmissão de dengue2.
Para evitar grandes lacunas nos dados, consideramos semanas
a partir da vigésima semana de 2017. Em 2018 e 2019, poucas
semanas isoladas estavam ausentes, portanto foi realizada uma
interpolação linear para preencher as lacunas.

Dados Meteorológicos: Os dados de temperatura média
diária (temp media), umidade relativa do ar média diária
(umid media) e precipitação total diária (prec total) de
cada cidade foram selecionados para a análise de regressão.
Obtivemos os dados do Banco de Dados Meteorológicos
(BDMEP) do INMET (Instituto Nacional de Meteorologia)4,
começando a partir de 4 semanas antes do inı́cio do perı́odo

1Site da Ecovec: https://ecovec.com/
2“Onde está o Aedes? | Prefeitura de Porto Alegre:” https://prefeitura.poa.

br/sms/onde-esta-o-aedes/infestacao-de-aedes-aegypti
3“Malha Municipal | IBGE:” https://www.ibge.gov.br/geociencias/

organizacao-do-territorio/malhas-territoriais/15774-malhas.html
4“INMET :: BDMEP:” https://bdmep.inmet.gov.br/

https://ecovec.com/
https://prefeitura.poa.br/sms/onde-esta-o-aedes/infestacao-de-aedes-aegypti
https://prefeitura.poa.br/sms/onde-esta-o-aedes/infestacao-de-aedes-aegypti
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html
https://bdmep.inmet.gov.br/


Figura 4. Municı́pios selecionados. Espı́rito Santo, Brasil.3

do ı́ndice vetorial (vigésima semana de 2017), para considerar
efeitos atrasados de até 4 semanas na evolução da população
do vetor. Os modelos epidemiológicos também utilizaram os
dados de temperatura, mas foram desenvolvidos considerando
semanas entre o final de 2018 e a maior parte de 2019, como
será abordado na seção III-D. Calculamos as médias semanais
para temp media e umid media e o total semanal para
prec total, gerando as variáveis denotadas resumidamente por
tempi, umidi e preci, em que i = 0, .., 4 indica a antecipação
da variável em semanas. Para lidar com valores faltantes antes
da agregação, imputamos valores utilizando as médias dos
dias de outros anos. Poucos dias estavam faltantes no geral,
exceto para alguns casos raros de dados ausentes por cerca
de 40 dias em sequência. Antes da construção dos modelos
de regressão, executamos a normalização Z-score nos dados,
a qual padroniza a sua escala, tornando sua média 0 e seu
desvio padrão 1. No caso dos modelos epidemiológicos, a
normalização da temperatura não foi realizada, visto que a
escala do valor já foi controlada por um termo.

Casos de Dengue: Obtivemos, para cada municı́pio, as
notificações de dengue semanais confirmadas dos residentes
por meio do SINAN (Sistema de Informação de Agravos de
Notificação), disponibilizado pelo Ministério da Saúde5. Para
a análise de correlação com o IMFA, consideramos valores
adiantados de IMFA em até 10 semanas, portanto a série
temporal das notificações foi extraı́da a partir da trigésima
semana de 2017. Havia poucos dias faltantes, então realizamos
interpolação linear para preencher as lacunas, exceto para o
municı́pio de Ecoporanga, que possuı́a muitos dias faltantes
e foi descartado da análise. Para Afonso Cláudio, apenas os
dados de 2018 e 2019 estavam disponı́veis.

A Figura 5 exibe, como ilustração, os dados coletados

5“SINAN:” https://datasus.saude.gov.br/acesso-a-informacao/
doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/

do municı́pio de Vitória. Percebe-se a forte sazonalidade da
temperatura e do ı́ndice de vetor. Além disso, há um enorme
pico de notificações em 2019, perı́odo correspondente a um
surto que afetou o paı́s inteiro.

B. Modelos de Regressão com o ı́ndice vetorial e os dados
meteorológicos

Desenvolvemos modelos parcimoniosos de regressão linear,
utilizando Modelos Lineares Generalizados (MLG), com uma
função de ligação logarı́tmica (Equação (10)). A transformação
logarı́tmica garante que apenas valores positivos da variável
resposta são considerados pelo modelo. Os modelos foram
ajustados de forma independente para cada par (municı́pio,
ano), para obter a influência das variáveis meteorológicas no
nı́vel de infestação do vetor (IMFA).

Assumimos primeiramente que a variável resposta (IMFA)
segue uma distribuição de Poisson (Equação 10), e, para cada
modelo, selecionamos os três melhores preditores rankeando-
os por meio de testes F de regressão univariada, para medir
o quão bem cada uma das variáveis (tempi, umidi e preci)
explica a resposta (MFAI).

log(E[Y ]) = β0 + β1x1 + β2x2 + · · ·+ βnxn

em que Y ∼ Poisson(µ)
(10)

Em seguida, comparamos os primeiros modelos gerados
com modelos que assumem que a resposta segue uma
distribuição Binomial Negativa, que também é comumente
utilizada para dados de contagem, como capturas, geralmente
quando há uma grande dispersão nos dados. Utilizamos como
métricas o Critério de Informação de Akaike (CIA = 2k −
2 ln(L̂)) e o Erro Médio Absoluto (EMA = 1

n

∑n
i=1 |yi − ŷi|),

e os novos modelos obtiveram um desempenho ligeiramente
pior. A métrica CIA balanceia o ajuste do modelo aos dados,
representado pelo termo ln(L̂), e a complexidade do modelo,
representada pelo número de variáveis k, enquanto a métrica
EMA avalia a diferença entre a resposta calculada pelo modelo
ajustado e os valores reais da variável resposta. O ideal é que
ambas medidas sejam minimizadas (não nos importamos com
overfitting, já que os dados não foram divididos em conjuntos
de treinamento e teste para atividades de predição).

Por fim, em comparação com a estratégia do rankeamento
de variáveis, utilizamos uma seleção de modelos stepwise
com a métrica CIA (inserção e remoção iterativa de variáveis
para minimizar o CIA). Embora houve melhoria dos valores
de CIA, a diferença se deu amplamente pela redução na
complexidade dos modelos em vez do aumento na qualidade,
pois apenas uma das três variáveis originais eram sempre
mantidas, consequentemente reduzindo o CIA enquanto o
valor do EMA aumentava. Portanto, a primeira estratégia
permaneceu preferida.

C. Correlação entre o ı́ndice vetorial e casos de dengue

Calculamos os coeficientes de correlação de Spearman e
Pearson para avaliar o relacionamento entre o ı́ndice de
infestação (IMFA), considerando valores adiantados em até

https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/
https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/


Figura 5. Dados, em escalas distintas, do municı́pio de Vitória, Espı́rito Santo (semanas 2017/20 a 2019/52). As linhas tracejadas verticais indicam o perı́odo
escolhido para os modelos epidemiológicos.

10 semanas, e as notificações de dengue, juntamente a testes
de significância baseados em p-valores.

O coeficiente de Spearman (intervalo de -1 a 1) mede
a monotonicidade do relacionamento entre duas variáveis.
Coeficientes próximos de -1 indicam uma forte tendência
de que, se uma variável aumenta, a outra diminui; valores
bem positivos indicam o oposto; e os próximos de 0 suge-
rem a ausência de relacionamento. O coeficiente de Pearson
comporta-se similarmente, mas assume certas premissas, como
um relacionamento linear entre as variáveis e uma distribuição
normal bivariada delas. O p-valor indica a probabilidade de um
sistema sem correlação de produzir datasets com resultados
pelo menos tão extremos quanto o computado de um dado
dataset; no contexto do trabalho, seria como a probabilidade
dos dados de captura e de notificações possuı́rem a medida de
correlação tão alta quanto a calculada por acaso; correlações
com p-valores maiores do que 5% foram discartadas.

D. Modelos epidemiológicos

Como ilustrado na Figura 5, os modelos epidemiológicos
foram desenvolvidos em torno do grande aumento no número
de casos de dengue em 2019. Escolhemos o perı́odo da semana
48 de 2018 à semana 47 de 2019, totalizando 52 semanas,
e consideramos apenas parte dos municı́pios: Vitória, Vila
Velha e Linhares, por já possuı́rem curvas de infecção com
caracterı́sticas distintas e para limitar o número de ajustes de
modelos, os quais requerem bastante tempo de processamento
e muitas correções.

Para cada cidade, três modelos, de um mais simples a um
mais complexo, foram ajustados aos dados: os já introduzidos
modelos SIR (Equações (2) - (4)) e SIR − SI , nomeado
SIR − SI v1 (Equações (5) - (9)), e uma segunda versão

do modelo SIR − SI (SIR − SI v2), que inclui o ı́ndice
vetorial como fator. Portanto, tomamos a abordagem mais
simples de omitir o compartimento de pessoas expostas (E), e
assumimos que novas notificações correspondem exatamente
a novas infecções, as quais, nesse caso, implicam uma capa-
cidade imediata de infecciosidade e o surgimento imediato de
sintomas. O parâmetro taxa de infecção (β) é variável: no caso
dos primeiros dois modelos, definimos β como uma função
linear da temperatura semanal (Equação (11)), e no caso do
terceiro incluı́mos também o ı́ndice de vetor como um fator
multiplicativo (Equação (12)). O termo βlag é o parâmetro
correspondente a quantas semanas o valor de temperatura está
adiantado, para considerar efeitos atrasados na população de
mosquitos, como feito no caso dos modelos de regressão.

β(t) = β0 + βscale T
(
t− βlag

)
(11)

β(t) = β0 + βscale T
(
t− βlag

)
IMFA(t) (12)

Utilizamos a redução da soma dos quadrados dos erros
(SQE =

∑n
i=1

(
yi − ŷi

)2
) entre as notificações reais acumu-

ladas semanalmente de dengue e o compartimento acumulado
de infectados, um compartimento adicional C (dCdt = β SI

N ).
Utilizar os dados acumulados, por conta de sua suavidade,
geralmente facilita bastante o processo de otimização, bem
como o expoente no erro, que penaliza fortemente os erros
grandes; entretanto, também buscou-se uma boa semelhança
entre as curvas de casos reais e do modelo, o que não é
garantido pela boa semelhança dos casos acumulados.

Para definir a população total de humanos (N ou Nh),
utilizamos a estimativa do IBGE (Instituto Brasileiro de Ge-
ografia e Estatı́stica) [21] da população dos municı́pios de



2019 (Tabela I). Em relação aos mosquitos, assumimos a
população total Nv = 2Nh. A população inicial de infecta-
dos humanos (I(0) ou Ih(0)) foi definida como o número
inicial de casos semanais de dengue, seguindo a premissa
de correspondência dos novos casos com novas infecções.
No caso dos modelos com dinâmica vetorial, ajustamos a
proporção de mosquitos infectados inicialmente (Iv(0), ver
Tabelas III e IV). Assumimos nenhum humano recuperado
inicialmente (R(0) = 0), e o grupo de suscetı́veis inicial, tanto
dos humanos quanto dos mosquitos, como toda a população
restante (S(0) = N − I(0)−R(0) e Sv(0) = Nv − Iv(0)).

Os parâmetros dos modelos, seus intervalos, valores iniciais
e origem são apresentados nas Tabelas II, III e IV. Utilizou-se,
para cada modelo, os mesmos valores em todas as cidades.
Em relação aos modelos com dinâmica de vetor explı́cita,
assumimos uma taxa de transmissão igual nas duas direções
(β = βvh = βhv), diferenciando, portanto, a força de
infecção apenas pela quantidade de infectados de cada lado
(Equações (6) e (9)). Adotamos taxas de nascimento/mortes
µ constantes, de modo que a população total de humanos e
de vetores permaneça constante (Nh = Sh + Ih + Rh = C1

e Nv = Sv + Iv = C2), bem como uma taxa de recuperação
constante γ para os humanos.

Tabela I
POPULAÇÃO TOTAL EM 2019 DOS MUNICÍPIOS SELECIONADOS PARA OS

MODELOS EPIDEMIOLÓGICOS.

Municı́pio Vitória Vila Velha Linhares
População 362.097 493.838 173.555

Tabela II
VALORES INICIAIS E INTERVALOS DE PARÂMETROS UTILIZADOS NO

MODELO SIR.

Parâmetro Intervalo Valor inicial Origem

µ (ano−1) – 1/79 [22]
γ (semana−1) – 1.4 [23]
β0 (semana−1) (0.01, 1.0) 0.1 Experimentação
βscale (0.01, 0.2) 0.05 Experimentação
βlag (semanas) (0, 10) 5 Experimentação

Tabela III
VALORES INICIAIS E INTERVALOS DE PARÂMETROS UTILIZADOS NO

MODELO SIR–SI V1.

Parâmetro Intervalo Valor inicial Origem

µh (ano−1) – 1/79 [22]
µv (dia−1) – 1/11 [24]
γ (semana−1) – 1.4 [23]
β0 (semana−1) (0.1, 1.0) 0.5 Experimentação
βscale (0.01, 0.2) 0.05 Experimentação
βlag (semanas) (0, 10) 5 Experimentação
Iv(0)/Nv (10−4, 10−2) 10−4 Experimentação

IV. RESULTADOS

Esta seção apresenta os resultados da etapa de modelagem
da análise exploratória dos dados de vigilância entomológica,

Tabela IV
VALORES INICIAIS E INTERVALOS DE PARÂMETROS UTILIZADOS NO

MODELO SIR–SI V2.

Parâmetro Intervalo Valor inicial Origem

µh (ano−1) – 1/79 [22]
µv (dia−1) – 1/11 [24]
γ (semana−1) – 1.4 [23]
β0 (semana−1) (0.1, 1.0) 0.5 Experimentação
βscale (0.01, 0.2) 0.05 Experimentação
βlag (semanas) (0, 10) 5 Experimentação
Iv(0)/Nv (10−4, 10−2) 10−4 Experimentação

dados meteorológicos e dos casos de dengue, incluindo os
modelos de regressão (seção IV-A), a análise de correlação
(seção IV-B) e os modelos epidemiológicos (seção IV-C).

A. Modelos de Regressão

A Tabela V exibe os coeficientes dos modelos de regressão
aplicados aos municı́pios. Variáveis de temperatura foram as
mais relevantes: foram as mais selecionadas e demonstraram
os maiores efeitos na densidade do vetor, o que atesta seu
papel importante no desenvolvimento e sobrevivência do mos-
quito [25]. Mesmo assim, a temperatura nem sempre foi um
dos melhores preditores em Vila Velha e Afonso Cláudio,
por exemplo, embora permanecesse importante em Vitória, o
municı́pio vizinho de Vila Velha. A umidade foi o segundo
fator mais importante, seguido pela precipitação.

No que diz respeito à consistência do impacto das variáveis
meteorológicas na variação populacional dos mosquitos, os
resultados indicam que tanto o conjunto de variáveis mais
relevantes quanto a magnitude de sua influência podem variar
durante anos distintos para o mesmo local. Por exemplo, por
2017 e 2019, fatores de umidade e precipitação prevaleceram
em Vila Velha, enquanto em 2018 a temperatura prevaleceu.
Já em Ecoporanga, a influência da temperatura se deu com
coeficientes bem diferentes de 2017 a 2018. Além disso,
resultados de locais vizinhos podem diferir consideravelmente,
como os de Vitória e Vila Velha. No entanto, ainda é possı́vel
observar casos em que não há mudanças tão consideráveis,
como em Vitória (2018-2019), Afonso Cláudio (2018-2019) e
Linhares (2017-2018).

B. Análise de Correlação

Reunimos, para cada municı́pio, as três maiores correlações
entre o ı́ndice de infestação (IMFA) e os casos de dengue
(Tabela VI). Os anos 2017 de Afonso Cláudio e todos os anos
de Ecoporanga não possuı́am dados suficientes, por isso não
estão presentes. A ausência de outros valores deu-se pela falta
de uma correlação estatisticamente significante (p-valor maior
do que 5%).

Levando em conta múltiplos municı́pios e anos distintos,
o relacionamento é consistentemente contraintuitivo: quanto
maior a infestação, menor o número de casos, evidenciando
a conexão complexa entre as duas variáveis [12]. A única
exceção desse padrão foi Afonso Cláudio. Além disso, o
grande deslocamento, em semanas, um ano após o outro, das



Tabela V
COEFICIENTES DOS MODELOS DE REGRESSÃO AJUSTADOS, PARA CADA

PAR MUNICÍPIO-ANO. VALORES COM MAIOR MAGNITUDE DESTACADOS, E
VARIÁVEIS NÃO SELECIONADAS MARCADAS COM UM TRAÇO (-). AS
SUB-COLUNAS ABAIXO DE CADA VARIÁVEL INDICAM O NÚMERO DE

SEMANAS ADIANTADAS.

tempi umidi preci

Ano 0 1 2 3 4 0 1 3 4 0 1 2 3 4

Vitória

2017 -0,02 0,19 – – – – – – – – -0,14 – – –
2018 – – – 0,03 -0,12 – – – – – – – 0,10 –
2019 – – – -0,01 -0,08 – – 0,11 – – – – – –

Vila Velha

2017 – – – – – -0,15 -0,31 – – – – – – 0,20
2018 0,24 0,09 – – – – -0,19 – – – – – – –
2019 – – – – – – – 0,11 0,10 – -0,12 – – –

Afonso Cláudio

2017 – – – – – – – 0,75 – 0,50 – 0,25 – –
2018 – 0,35 – 0,10 0,81 – – – – – – – – –
2019 – – – 0,43 0,94 – – – – – – 0,31 – –

Linhares

2017 – 0,17 – – – -0,17 -0,21 – – – – – – –
2018 0,06 0,22 – – – – -0,10 – – – – – – –
2019 – – – – -0,07 – – 0,10 0,15 – – – – –

Ecoporanga

2017 0,15 0,32 0,12 – – – – – – – – – – –
2018 – -0,10 0,52 – – – – – – – – – 0,21 –
2019 – – – – -0,14 -0,37 – – 0,16 – – – – –

Tabela VI
CORRELAÇÕES MAIS FORTES ENTRE A DENSIDADE DE MOSQUITOS

(IMFA) E AS NOTIFICAÇÕES DE DENGUE, PARA CADA PAR
MUNICÍPIO-ANO. VALORES AUSENTES MARCADOS COM UM TRAÇO (–), E

P-VALORES EM PARÊNTESES. TIPOS DE CORRELAÇÃO: PEARSON (P) E
SPEARMAN (S). O SUBSCRITO INDICA O VALOR DA DENSIDADE

ADIANTADO EM ATÉ DEZ SEMANAS EM RELAÇÃO ÀS NOTIFICAÇÕES.

Ano Top 1 Top 2 Top 3

Vitória

2019 IMFA10 (P): -0,39 (0,00) IMFA9 (P): -0,33 (0,02) IMFA7 (P): -0,33 (0,02)

Vila Velha

2017 IMFA0 (S): -0,43 (0,04) – –
2018 IMFA10 (S): -0,41 (0,00) IMFA1 (P): -0,29 (0,04) –

Afonso Cláudio

2018 IMFA0 (P): 0,54 (0,00) IMFA1 (P): 0,49 (0,00) IMFA2 (S): 0,32 (0,02)
2019 IMFA5 (P): 0,75 (0,00) IMFA4 (P): 0,73 (0,00) IMFA6 (P): 0,68 (0,00)

Linhares

2017 IMFA4 (S): -0,51 (0,01) – –
2018 IMFA0 (P): -0,45 (0,00) IMFA1 (P): -0,37 (0,01) IMFA6 (P): -0,34 (0,01)
2019 IMFA8 (S): -0,41 (0,00) IMFA7 (P): -0,35 (0,01) IMFA10 (P): -0,33 (0,02)

variáveis com maior correlação, como em Vila Velha e em
Linhares, releva uma inconsistência temporal que ressalta a
falta de um padrão claro de relação entre as variáveis.

C. Modelos Epidemiológicos

A Tabela VII apresenta os valores dos parâmetros dos
modelos epidemiológicos ajustados aos municı́pios. Pode-se
notar que o parâmetro βlag é consistentemente próximo de
5 semanas para os modelos mais simples SIR, e maior,
próximo de 9 semanas, para os dois tipos de modelos mais
complexos SIR − SI . Além disso, por mais que possuam
no geral um valor de β0 maior, os modelos mais complexos
SIR − SI possuem sempre um βscaling menor. Na seção V
seguinte, mostraremos que os valores de β(t) nos modelos
mais complexos tendem a ser menores. Isso pode ser explicado
pela maior população de mosquitos infectados (inicialmente
0.1% de Nv = 2Nh) se comparada com a população humana

de infectados, de modo que, para equilibrar a força de infecção
(β(ShIv)/Nh) é necessário um β menor.

Tabela VII
PARÂMETROS ESTIMADOS POR CADA MODELO EPIDEMIOLÓGICO,

AGRUPADOS POR MUNICÍPIO.

Modelo β0 βscaling βlag Iv(0)

Vitória

SIR 0,1115 0,0519 4,94 –
SIR–SI v1 0,1858 0,0199 9,00 10−4

SIR–SI v2 0,1000 0,0254 8,67 10−4

Vila Velha

SIR 0,1118 0,0520 4,93 –
SIR–SI v1 0,1798 0,0202 9,00 10−4

SIR–SI v2 0,1884 0,0196 8,89 10−4

Linhares

SIR 0,1105 0,0520 4,94 –
SIR–SI v1 0,1055 0,0233 9,95 10−4

SIR–SI v2 0,1741 0,0181 9,03 10−4

No que diz respeito à qualidade de ajuste aos dados dos
modelos, a Tabela VIII compara as infecções semanais e
acumuladas calculadas a partir dos modelos com os dados
reais, utilizando o RMSE e o R2. O RMSE (raiz do erro
quadrático médio, Equação 13) é como uma normalização da
soma dos quadrados dos erros (ver seção III-D), mantendo
a unidade de medida dos dados originais e uma escala mais
adequada. O R2 (coeficiente de determinação), por sua vez,
indica o quanto um modelo explica a variância nos dados;
Um R2 próximo de 1 é melhor, enquanto valores próximos
de 0, piores; valores negativos são possı́veis, e indicam um
modelo totalmente não representativo, pior do que apenas uma
média. Além disso, para uma comparação objetiva dos picos de
casos reais e dos modelos, duas métricas foram adicionadas,
as quais medem a distância da posição e do valor do pico
(respectivamente, Dist(p) e Ratio(p)).

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2
, (13)

O modelo SIR apresentou uma performance muito boa,
provavelmente por sua maior simplicidade, enquanto o modelo
SIR − SI v1, mesmo que pior, apresentou um resultado
satisfatório. Por fim, o modelo mais complexo SIR − SI
v2 mostrou uma performance muito pior consistentemente. É
importante ressaltar que um bom ajuste dos casos acumulados
não é garantia de um bom ajuste dos casos semanais, como a
própria Tabela VIII mostra.

V. DISCUSSÃO

Esta seção busca discutir e interpretar os resultados da etapa
de modelagem, de forma a concluir a análise do trabalho.



Tabela VIII
DESEMPENHO DOS MODELOS SIR, SIR–SI V1 E SIR–SI V2 AJUSTADOS

PARA CADA MUNICÍPIO (2018/48 - 2019/47): ERRO (RAIZ DO ERRO
QUADRÁTICO MÉDIO - RMSE) E COEFICIENTE DE DETERMINAÇÃO (R2),

EM RELAÇÃO AOS DADOS REAIS ACUMULADOS (C) E SEMANAIS (S).
TAMBÉM, APRESENTA-SE A DISTÂNCIA SEMANAL ENTRE PICOS DE

INFESTAÇÃO (Dist(p)) E A RAZÃO DOS PICOS (Ratio(p)), EM RELAÇÃO
AOS DADOS REAIS.

Modelo RMSE (C/S) R2 (C/S) Dist(p) Ratio(p)

Vitória

SIR 209.07 / 38.35 0.99 / 0.77 3 1.01
SIR–SI 534.46 / 74.89 0.93 / 0.11 10 0.81
SIR–SI v2 833.88 / 124.15 0.84 / -1.45 17 0.89

Vila Velha

SIR 146.84 / 41.56 1.00 / 0.70 1 0.88
SIR–SI v1 439.15 / 64.97 0.96 / 0.27 4 0.72
SIR–SI v2 796.82 / 119.39 0.86 / -1.48 13 0.77

Linhares

SIR 122.33 / 32.40 0.99 / 0.66 1 0.66
SIR–SI v1 251.74 / 43.87 0.96 / 0.38 9 0.62
SIR–SI v2 980.21 / 104.18 0.44 / -2.50 17 0.84

A. Modelos de Regressão

A influência de variáveis meteorológicas na população
de vetores depende fortemente do local de estudo [6] [7]
[15], o que foi observado nesse trabalho até em municı́pios
próximos, como em Vila Velha e Vitória. As inconsistências
temporais nesse tipo de modelagem com ı́ndices vetoriais
- como fortes mudanças nos coeficientes, deslocamentos de
semanas ou mudanças de variáveis - podem ser explicadas por
diversos motivos, sejam mudanças nas polı́ticas de controle
vetorial, mudanças nas frequências de amostragem semanais,
caracterı́sticas das armadilhas que conferem capacidades de
captura sazonais [15], ou talvez até mudanças maiores/eventos
externos, como alterações climáticas. De qualquer forma, as
diferenças demonstram uma importância do monitoramento
local contı́nuo para um melhor entendimento das dinâmicas
de população do mosquito.

B. Análise de Correlação

Casos de dengue foram associados de forma fraca ou con-
traintuitiva com a infestação de vetores. Múltiplas condições
podem contribuir para a evolução dos casos, como fatores
climáticos e socioeconômicos [26]. Em 2019, a explosão de
casos deu-se por razão de um conjunto de circunstâncias,
como a circulação de diversos sorotipos do vı́rus, mudanças
climáticas e polı́ticas públicas ineficazes, de acordo com o
infectologista José Moreira [27].

No entanto, um dos municı́pios, Afonso Cláudio, apresentou
uma tendência de correlações bem diferente, com valores bem
positivos. A Figura 6 mostra a evolução do ı́ndice de infestação
e dos casos de dengue em Vitória e em Afonso Cláudio.
O padrão de Vitória é similar ao dos outros municı́pios. A
esparsidade dos dados de Afonso Cláudio, por conta da taxa
de amostragem de armadilhas relativamente baixa, fortalece a
coincidência dos picos de infestação com picos de dengue, de

modo que os valores observados são provavelmente excepci-
onais. Em suma, é necessário uma exploração mais profunda
para entender o relacionamento entre as duas variáveis.

Figura 6. Evolução do ı́ndice vetorial (IMFA) e das notificações de dengue,
em escalas distintas, das cidades de Vitória (acima) e Afonso Cláudio (abaixo).

C. Modelos Epidemiológicos

Entre os três modelos epidemiológicos, o mais simples
SIR apresentou o melhor resultado de ajuste aos dados,
inclusive aproximando as curvas de infecções reais com boa
precisão, como mostram as Figuras 7, 8 e 9. Esse resultado
têm sido observado em trabalhos como [19], abordado na
seção II. O menor número de premissas, interações e variáveis
provavelmente tornam o modelo mais fácil de ser ajustado. Por
outro lado, o modelo não será suficiente se o objetivo for um
estudo mais profundo das dinâmicas da doença.

Os resultados revelam um êxito ao utilizar a temperatura
como um fator determinante da força de infecção da doença.
Nesse caso, os modelos SIR identificaram uma influência
mais rápida (cerca de 5 semanas) da variação da tempera-
tura (parâmetro βlag), enquanto os modelos mais complexos
SIR−SI identificaram um efeito mais tardio. Entre os fatores
para o aumento da disseminação da doença, o tempo de
incubação do vı́rus no humano e no vetor é fortemente im-
pactado pela temperatura [28], cujas flutuações naturalmente
poderão resultar em um efeito atrasado na população.

Em relação aos valores da taxa de transmissão, os modelos
mais complexos SIR− SI tendem a possuir valores de β(t)
menores, como abordado na seção IV-C. As Figuras 11, 12
e 13 exibem exatamente a evolução dos valores de β de cada
modelo e cada municı́pio. Considerando um mesmo modelo,
as curvas de transmissão de cada municı́pio são bem similares
entre si, com um pequeno deslocamento vertical por conta das
variações nos números de casos reais. Além disso, as curvas
dos primeiros dois modelos possuem uma aparência similar
de pico às curvas de casos, mas são deslocadas à esquerda, o
que não é uma surpresa, pois o ápice da taxa de transmissão
é bem antes do pico, e começa a decair logo em seguida. Ao



observar as Figuras 14, 15 e 16, percebe-se (de forma mais
clara com os dados de 2019) um padrão claro entre dengue e
temperatura, justificando essa aparência.

Por fim, o terceiro modelo, que considera o ı́ndice de
vetor em sua formulação, obteve resultados consideravelmente
piores. A Figura 10 mostra a comparação das curvas de casos
reais com as curvas do melhor resultado do modelo (Vila
Velha). Observando-se novamente as Figuras 14, 15 e 16,
percebe-se que o ı́ndice de vetor (IMFA) é altamente sazonal,
assim como a temperatura. Por outro lado, visualmente não
há um padrão claro de ligação do IMFA com os casos de
dengue, o que vai ao encontro da análise de correlação.

Figura 7. Modelo SIR vs casos reais - Vitória (2018/48 - 2019/47).

Figura 8. Modelo SIR vs casos reais - Vila Velha (2018/48 - 2019/47).

Um dos efeitos disso nas curvas de taxa de transmissão
do terceiro modelo (Figura 13) é a criação de um vale por
volta das primeiras semanas, quando o valor deveria ser mais
alto. Isso se deu pela baixa infestação nesse perı́odo inicial
(mais perceptı́vel em Vitória ou em Linhares, Figuras 14 e
16), e o pelo aumento da infestação apenas conforme os casos
encaminhavam-se para uma normalização.

Dessa maneira, o uso dos ı́ndices no modelo SIR − SI
v2 de forma geral assemelhou-se mais à introdução de um
ruı́do. Portanto, concluı́mos que há necessidade de um estudo

mais aprofundado e multifatorial para a associação do ı́ndice
vetorial com os casos de dengue em modelos epidemiológicos.

Figura 9. Modelo SIR vs casos reais - Linhares (2018/48 - 2019/47).

Figura 10. Modelo SIR − SI v2 vs casos reais - Vila Velha (2018/48 -
2019/47).

Figura 11. Modelo SIR - Evolução da taxa de transmissão em cada
municı́pio.

VI. CONCLUSÃO

Este trabalho teve por objetivo analisar o relacionamento de
dados de vigilância entomológica (ı́ndice de vetor) com dados
meteorológicos e com casos de dengue de alguns municı́pios
do estado do Espı́rito Santo. Desenvolvemos modelos de
regressão e efetuamos análises de correlação, de forma a,



Figura 12. Modelo SIR−SI v1 - Evolução da taxa de transmissão em cada
municı́pio.

Figura 13. Modelo SIR−SI v2 - Evolução da taxa de transmissão em cada
municı́pio.

Figura 14. Em escalas distintas, notificações de dengue, ı́ndice de infestação
(IMFA) e temperatura semanal média - Vitória (2017/20 - 2019/52). As
linhas tracejadas verticais indicam o perı́odo escolhido para os modelos
epidemiológicos.

Figura 15. Em escalas distintas, notificações de dengue, ı́ndice de infestação
(IMFA) e temperatura semanal média - Vila Velha (2017/20 - 2019/52).
As linhas tracejadas verticais indicam o perı́odo escolhido para os modelos
epidemiológicos.

respectivamente, avaliar o relacionamento dos ı́ndices de vetor
com as variáveis meteorológicas e com a incidência de dengue.
Finalmente, exercitamos o uso de modelos epidemiológicos
compartimentais com os casos de dengue, verificando o im-

Figura 16. Em escalas distintas, notificações de dengue, ı́ndice de infestação
(IMFA) e temperatura semanal média - Linhares (2017/20 - 2019/52).
As linhas tracejadas verticais indicam o perı́odo escolhido para os modelos
epidemiológicos.

pacto da inclusão do ı́ndice de vetor na formulação.
É bem estabelecido que há uma forte relação entre fatores

ambientais, como climáticos, e ı́ndices de mosquitos, sejam
larvais, pupais ou de adultos [4] [5] [28]. Um dos fatores
mais relevantes é a temperatura, como encontrado pelos mo-
delos de regressão desenvolvidos. Além disso, as diferenças
consideráveis nos modelos, ano após ano nos mesmos locais
e até em relação a locais vizinhos, demonstra a importância
da vigilância contı́nua e localizada.

Em relação à análise de correlação, o casos de dengue exibi-
ram uma correlação fraca ou contraintuitiva com a abundância
do vetor, destacando a caracterı́stica multifatorial da doença.
O mecanismo que descreve o relacionamento entre as duas
variáveis não é bem compreendido pela literatura [12]. Nesse
sentido, a utilização do ı́ndice de vetor não apresentou vanta-
gem nos modelos epidemiológicos de incidência de dengue,
enquanto a temperatura mostrou-se um ótimo fator.

Limitações na etapa de regressão incluem não considerar
outras variáveis relevantes, como vegetação [7], não considerar
a possı́vel influência do ambiente na efetividade das capturas
das armadilhas ou possı́veis mudanças de regimes de controle
vetorial nos municı́pios. No caso da análise de correlação, con-
sideramos correlações apenas temporais e não espaciais. Por
fim, a modelagem epidemiológica, ao passo que demonstra um
aspecto importante dos dados, pode ter sido simplória, sendo
necessário um desenvolvimento de um modelo multifatorial
para integrar os dados de vigilância de forma satisfatória.

Sugestões de trabalhos futuros incluem: analisar diferenças
e a consistência de modelos de previsão de casos de dengue
com variáveis meteorológicas, aplicadas em locais diferentes e
por longos perı́odos de tempo distintos (como anos); integrar
dados reais de infecção de dengue em mosquitos ou integrar
dados espaciais, para análises de correlação com casos em
humanos; e desenvolver e comparar modelos epidemiológicos
de dengue com processos/mecanismos mais complexos, que
considerem o ı́ndice de vetor em sua formulação.
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