
OpticNet: Self-Adjusting Networks for
ToR-Matching-ToR Optical Switching Architectures

Caio A. Caldeira, Otavio A. de O. Souza and Olga Goussevskaia
Universidade Federal de Minas Gerais (UFMG), Brazil
{caio.caldeira, oaugusto, olga}@dcc.ufmg.br

Stefan Schmid
TU Berlin & Fraunhofer SIT, Germany

stefan.schmid@tu-berlin.de

Abstract—Demand-aware reconfigurable datacenter networks
can be modeled as a ToR-Matching-ToR (TMT) two-layer ar-
chitecture, in which each top-of-rack (ToR) is represented by a
static switch, and n ToRs are connected by a set of reconfigurable
optical circuit switches (OCS). Each OCS internally connects a
set of in-out ports via a matching that may be updated at runtime.
The matching model is a formalization of such networks, where
the datacenter topology is defined by the union of matchings over
the set of nodes, each of which can be reconfigured at unit cost.

In this work we propose a scalable matching model for scenar-
ios where OCS have a constant number of ports. Furthermore,
we present OpticNet, a framework that maps a set of n static
ToR switches to a set of p-port OCS to form any constant-degree
topology. We prove that OpticNet uses a minimal number of
reconfigurable switches to realize any desired network topology
and allows to apply any existing self-adjusting network (SAN)
algorithm on top of it, also preserving amortized performance
guarantees. Our experimental results based on real workloads
show that OpticNet is a flexible and efficient framework to design
efficient SANs.

Index Terms—Reconfigurable Datacenter Networks, Self-
Adjusting Networks, Optical Circuit Switching, Matching Model

I. INTRODUCTION

The design of efficient datacenter networks has received
increasing attention in recent years [1]–[9], fueled by data-
centric online applications, such as web search, social net-
works, and multimedia. Augmenting the internal switching
capacity of the datacenter networks according to traffic growth
has become increasingly cost prohibitive [8]. Traditionally,
datacenter network designs rely on static topologies, such as
the Clos topology [10], [11], hypercubic topologies like BCube
and MDCube [12], [13], or expander-based networks [14],
[15]. Alternatively, rotor switches [8], [9] provide periodic
direct connectivity. While such architectures perform well
for all-to-all traffic patterns, they essentially form demand-
oblivious topologies.1

Empirical studies show that communication patterns in
datacenters feature much spatial and temporal locality [2], [3],
[16], i.e., traffic is bursty and traffic matrices skewed. This
structure represents an untapped potential for building more
efficient communication networks This is the advantage of
demand-aware topologies, based on e.g. 3D MEMS optical
circuit switches (OCS) [1]–[5], [5]–[7], [17]–[19], which can

1Our research work was supported by CAPES, CNPq, Fapemig, and the
European Research Council (ERC), grant agreement No. 864228.

provide shortcuts to such elephant flows. OCS provide recon-
figurations in order of milliseconds and are reconfigurable on-
demand, such that a scheduling or matching algorithms can
determine the next configuration based on the network state.
Several prototypes based on commodity-off-the-shelf OCS
have been built, and their advantages have been demonstrated,
e.g., [5], [19].

Self-Adjusting Networks (SAN) are networks which opti-
mize their physical topology toward the demand they serve in
an online manner, i.e., without prior knowledge of the traffic
demand. SAN can be approached from the perspective of self-
adjusting data structures [2]. This paradigm shift resembles
the process that data structures went through some decades
ago [20], [21], evolving from static worst-case designs toward
demand-aware and self-adjusting data structures.

When analyzing the performance of SANs, it is common to
distinguish between the so-called adjustment cost and service
cost. The former refers to the cost of network reconfiguration
(e.g., energy, latency and control plane overhead due to
physical network topology adjustments), and the latter refers
to the price of serving each communication request (e.g. the
delay proportional to source-destination route length). Most
of the existing SAN algorithms [2] have been based on edge-
distance adjustment cost models, which define adjustment cost
as the number of edges replaced between consecutive network
topologies. This is a useful basic model that enabled the first
algorithmic results. In practice, however, switching hardware
usually allows to reconfigure the topology on a so-called per-
matching granularity, i.e., the adjustment cost is proportional
to the number of OCS reconfigurations, where each switch
internally connects its in-out ports via a matching.

ToR-Matching-ToR (TMT) [22] is a two-layer leaf-spine
architecture for datacenter networks, in which each top-of-
rack (ToR) is represented by a (leaf) static packet switch, and
n ToRs are connected by a set of (spine) reconfigurable OCSs.
Each spine switch internally connects n in-out ports via a
matching that may be reconfigured at runtime. TMT can be
used to model existing systems, such as RotorNet [9], Opera
[8], and ProjecToR [3].

The matching model (MM) is a first formalization of TMT
networks [22]. The key property of MM is assuming that any
topology can be defined as a union of matchings over the set
of nodes and that rearranging the edges of a single matching
comes at a fixed cost. Thus the total adjustment cost for

adjusting the whole topology to a new one is determined by the
number of matchings needed to construct the topology. Early
work has shown this model’s relevance, e.g. in [23] the authors
simulate several so-called lazy SANs in the MM, based on
spaced out (less frequent) calls of existing (sequential) SANs,
such as SplayNets [4] and ReNets [24].

In this work, we propose a scalable matching model (MM’),
which generalizes the MM by adding the constraint that the
number of input-output ports of each reconfigurable spine
switch is constant, while relaxing the constraint that the
number of spine switches is constant. MM’ adds flexibility
to the network design, depending on the cost and constraints
on available switching hardware. MM’ uses larger leave-layer
(static) switches, which typically come at a lower per-port
hardware price than reconfigurable OCS hardware [25], and
a greater number of smaller spine-layer switches, which can
be incrementally appended to the existing architecture (even
at runtime) in case new ToRs are added to the datacenter.

Summary of contributions: In Section II we describe
the scalable matching model (MM’), a generalization of the
matching model [22], that allows to model TMT architectures
in which the number of ToRs (arbitrarily) exceeds the number
of in-out ports of the spine-layer switches. In Section III we
present OpticNet, a framework that maps a set of (leave-
layer) ToR switches to a set of (spine-layer) demand-aware
reconfigurable OCSs to form any constant-degree network
topology. In Section V we prove that OpticNet is correct, is
optimal with respect to the number of spine switches, and any
existing SAN algorithm can run on top of it, while preserving
amortized performance guarantees in the MM’ model. In
Section VI we describe the implementation of OpticNet and
evaluate its performance in combination with state-of-the-art
SAN algorithms. Finally, in Section VII we discuss related
work, and in Section VIII present our conclusions.

II. MODEL

SANs: The objective of SAN algorithms is to create a net-
work topology to connect a set V of n communication nodes
(e.g., top-of-rack switches, ToRs). The input to the problem is
given by a sequence σ of m messages σi(si, di) ∈ V × V
occurring over time, with source si and destination di; m
can be infinite. We denote by bi the time when a message
σi is generated, and by ei the time in which it is delivered.
The sequence σ is revealed over time, in an online manner,
and can be arbitrary (e.g. chosen adversarially). When serving
these communication requests, the network can adjust over
time, through a sequence of network topologies N0, N1,
Each Nt should belong to some desired graph family N . For
scalability reasons, the networks should be of constant degree.

Adjustments: In order to minimize the communication cost
and adjust the topology smoothly over time, the network is
reconfigured (locally) through adjustments that preserve the
desired properties of the graph family N . SANs like SplayNet
[4] and DiSplayNet [26] are based on Binary Search Trees
(BST) and extend the classical zig, zig-zig and zig-zag rota-
tions, first introduced for splay trees [20]. CBTrees [27] and

CBNet [28] leverage bottom-up and top-down semi-splaying
(semi-zigzig and semi-zigzag). Each splay operation updates a
constant number of links at constant cost, and roughly halves
the depth of every node along the communication path. This
halving effect makes splaying efficient in an amortized sense.

TMT: TMT [22] is a useful architecture to model RDN. It
is a two-layer network, in which a set of static leaf-layer (ToR)
switches is connected using a set of reconfigurable spine-layer
switches (OCS). Each OCS internally connects its in-out ports
via a matching, that can be dynamic and change over time.

MM: The matching model [22] is a formalization of
the TMT architecture. The network consists of a set of
n nodes (leaf layer static switches) are connected using
k′ = O(1) (spine-layer reconfigurable) switches, SW =
{sw1, sw2, . . . , swk′}, and each switch internally connects its
n in-out ports via a matching. At each time t, the network
is the union of these matchings: Nt = Mt = ∪k′

i=1M(i, t),
where M(i, t) denotes the matching on switch swi at time t.

Scalable matching model (MM’): In this work, we gen-
eralize the MM by adding the constraint that the number of
ports of each spine-layer switch is constant, while relaxing the
constraint that the number of spine switches is constant. Let
N be the family of constant degree (≤ k) graphs on a set V
of n nodes (static leaf-layer ToR switches) and Nt ∈ N be
a network topology at time t. Let SW = {sw1, . . . , swn′}
be a set of (reconfigurable spine-layer) switches, of size
n′ = f(n, p, k), where each switch swi ∈ SW internally
connects its p = O(1) in-out ports via a matching M(i, t) of
size ≤ p. As in MM, at each time t, the network Nt is equal
to the union of all these matchings:

Nt =Mt = ∪n
′

i=1M(i, t).

TMT port configuration: The port-to-port physical con-
nections between leaf and spine layers in a TMT architecture
can be realized in different ways, according to the hardware
specification (e.g., via free-space optics [3]). In this work,
we assume that leaf-spine connections are static half-duplex
links2, i.e., for two ToRs (leaf-layer switches) (u, v) ∈ Nt to
establish a connection, we need that ∃swx ∈ SW |(u, v) ∈
M(x, t). Moreover, there must be a static (physical) link
connecting an output port of u to an input port of swx and a
static link from an output port of swx to an input port of v.

Before the system (RDN) starts operating, the TMT archi-
tecture must be configured according to these requirements,
i.e., we need to find a one-to-one assignment, each represent-
ing a half-duplex link, between all in-out and out-in ports of
leaf-spine switch pairs.

In the MM, the port mapping between leaf-layer and spine-
layer switches is straightforward: each ToR i, 1 ≤ i ≤ n has
k′ uplinks, where uplink j, 1 ≤ j ≤ k′ connects to port i in
swj . The directed outgoing (leaf) uplink is connected to the
incoming port of the (spine) switch and the directed incoming

2Note that a half-duplex configuration can be converted to full-duplex by
using the same ToR-to-Switch configuration but letting go of the notions of
input and output ports. This uses the ceiling of half of number of switches
used by the half-duplex configuration

(leaf) uplink is connected to the outgoing port of the (spine)
switch. Each switch has n input ports and n output ports and
the connections are directed, from input to output ports. At any
point in time, each switch swj ∈ SW provides a matching of
size ≤ n between its input and output ports.

In MM’, however, because spine-layer switches are limited
to a constant number of in-out ports, the problem of connecting
leaf-layer and spine-layer switches has a different structure.

MM’ port mapping problem (MM’-PMP): Let N be the
family of constant degree (≤ k) graphs on a set V of n nodes
(static leaf-layer ToR switches), and SW = {sw1, . . . , swn′}
be a set of n′ = f(n, p, k) (reconfigurable spine-layer)
switches, where each switch swi ∈ SW internally connects
its in-out ports via a matching of size ≤ p.

Let P(swx) ⊆ V × V, |P(swx)| = p2 be the (static) in-out
port-set of a spine-layer switch swx ∈ SW .

Given a network topology Nt ∈ N at time t, the objec-
tive is to find a set of switches SW , a set of matchings
Mt = ∪swx∈SWM(x, t) = Nt, and all in-out port sets
P(swx), swx ∈ SW , such that ∀(u, v) ∈ Nt:

∃swx ∈ SW | (u, v) ∈M(x, t) and M(x, t) ∈ P(swx).

Time model: In sequential SAN algorithms [4], [20], [23],
each message σi is processed strictly after the previous one
σi−1 has been delivered. In this work we consider a concurrent
execution scenario. We assume that time is divided into
synchronous rounds, and each round consists of a constant
number of time-slots. In a round, multiple (independent) nodes
can make adjustments concurrently. We consider that nodes
and communication between them are reliable.

Cost Model: Consider a sequence σ of m messages, a SAN
algorithm A, any initial network N0 ∈ N , and a message
σi(si, di) ∈ σ, generated at time bi and delivered at time ei.
In terms of time, one objective is to minimize the makespan:

Makespan(A, N0, σ) = max
1≤i≤m

ei − b1.

Let us define the adjustment cost adji as the number of
adjustments performed by A to deliver σi and the service
cost srvi to be the price of routing the message along the
(shortest) path distNei

(si, di), Nei ∈ N . We assume that
routing a message incurs a cost of 1 unit per hop. MM allows
to define the adjustment cost in different ways, depending on
e.g. particular OCS hardware specification:

• Edge distance: The case where the adjustment cost is
proportional to the number of replaced edges between
each consecutive matchings of the same switch swx ∈
SW . If the cost of a single edge is α, then the adjustment
cost for the entire network is defined as:

linkAdj(Nt−1, Nt) = α
∑

swx∈SW

|M(x, t)\M(x, t−1)|.

• Switch Cost: In this case, if a matching (switch) is recon-
figured (adjusted), it costs α regardless of the number of
edge changes in the matching. Let IS=S′ be an indicator

function that denotes if set S is equal to set S′ . Then
the adjustment cost for the network is:

swAdj(Nt−1, Nt) = α
∑

swx∈SW

IM(x,t)=M(x,t−1).

Let tmax = max
1≤i≤m

ei. Finally, we define the total service

cost, total edge adjustment cost, total switch adjustment cost,
and total work cost, respectively, as follows:

Srv(A, N0, σ) =

m∑
i=1

(distNei
(si, di) + 1), (1)

LinkAdj(A, N0, σ) = α

tmax∑
t=1

linkAdj(Nt−1, Nt), (2)

SwAdj(A, N0, σ) = α

tmax∑
t=1

swAdj(Nt−1, Nt), (3)

Cost(A, N0, σ) = Srv(A, N0, σ) + Adj(A, N0, σ).(4)

III. OPTICNET

OpticNet is a framework for implementing SAN algorithms
in the TMT network architecture. Firstly, we describe how
OpticNet solves the MM’-PMP problem. Then, we describe
how SAN adjustments are implemented in OpticNet.

Firstly, we partition the set of spine-layer switches SW into
two subsets, by type: unit switches (SW∪) and cross switches
(SW×), as follows:

SW = SW∪ ∪ SW×.

For simplicity, we assume that n%p = 0 (or, equivalently,
that 1 ≤ x < p non-active vertices are added to the network, so
that n is a multiple of p). Next, we partition the set of leaf-layer
switches (ToRs) V into C =

⌈
n
p

⌉
clusters Ci ⊆ V, |Ci| = p,

as follows: ∀(u, v) ∈ V × V , if u < v then u ∈ Ci, v ∈ Cj ,
where:

i = min

(⌊
u

p

⌋
,

⌊
v

p

⌋)
, j = max

(⌊
u

p

⌋
,

⌊
v

p

⌋)
.

Each cluster Ci will be assigned to a group of k switches
in SW∪, and each pair of clusters (Ci, Cj), i ̸= j will be
assigned to a group of 2k switches of type SW×. Finally, we
define the in-out port-sets as follows:

P(sw∪
i·k+x) = Ci × Ci, ∀ 0 ≤ i < C, 0 ≤ x < k,

P(sw×
idx(i,j)+x) = Ci × Cj , ∀ 0 ≤ i < j < C, 0 ≤ x < 2k,

where:

idx(i, j) = 2k ·
i−1∑
x=0

(C − x− 1) + 2k · (j − i− 1)

= k · i · (2 · C − 1− i) + 2k · (j − i− 1)

!"#$ %&#$'ℎ)* %+∪ !"#-" %&#$'ℎ)* %+×

*&
/01

∪ *&
/23 0

143
∪

5/×5/
⋯

⋯

5/×57

*&/89(/,7)× *&/89 /,7 2043
×

=->? =->@43⋯

*&
701

∪ *&
723 0

143
∪

57×57
⋯⋯

5AB*$)C 5/D?
=->E7 =->E 723 43⋯

5AB*$)C 57 5AB*$)C 5F43

%GHIJ KLMJ>:

KJLO KLMJ>:

=->E43

P × P
Q5%

#" ↔ -B$

P × P
Q5%

#" ↔ -B$

P × P
Q5%

#" ↔ -B$

P × P
Q5%

#" ↔ -B$
⋯

P × P
Q5%

#" ↔ -B$

P × P
Q5%

#" ↔ -B$

⋯

0
4

1
5

2
6

3
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

!"#∪

!"%∪

Fig. 1. a) Full-duplex OpticNet TMT Architecture: Leaf Layer: constant-degree ≤ k network on n nodes; Spine Layer: set of unit and cross-type p in-out
port OCS switches SW = SW∪ ∪ SW×, |SW∪| = kC, |SW×| = 2k ·

(C
2

)
, C = ⌈n/p⌉. (b) Full-duplex Unit switch example for a k = 4- degree

network with n = p = 8.

The total number of spine-layer p-port switches to connect
n leaf-layer switches in a constant-degree ≤ k network used
by OpticNet is3:

|SW | = |SW∪|+ |SW×| = kC + 2k

(
C

2

)
= kC2. (5)

In Figure 2a we illustrate how OpticNet implements a TMT
architecture in a datacenter comprised of a k-degree network
topology on n racks and a set of p-port spine-layer switches. A
set of leaf-layer (ToR) switches is partitioned into C clusters
of size p, and each v ∈ Ci is connected to one input and one
output port of k unit switches, and to either one input or one
output port of 2k cross switches, for each cluster Cj , j ̸= i.
The number of ports of each ToR switch is 2k+2k(C−1) =
2k · C. Note that, for each cross cluster Ci × Cj , half the
switches would have vertices from Ci on the input ports and
the vertices from Cj on the output ports, with the other half
inverted. In Figure 1b we illustrate an example of four p = 8-
port unit switches connecting a k = 4-degree network of n = 8
nodes. In Figure ?? we illustrate a BST network on n = 8
nodes, connected via 8 unit and 4 cross p = 4-port switches.

Network adjustments: We assume that, at each round t,
OpticNet receives a set of edges new edges← Nt+1 \Nt to
be inserted, and a set of edges delete edges ← Nt \ Nt+1

to be deleted, between two consecutive network topologies
Nt ∈ N and Nt+1 ∈ N . We denote by Mt,Mt′ ,Mt+1

the sets of matchings before, during and after the network
adjustment operation, respectively. Initially, we set Mt′ ←
Mt andMt+1 ←Mt, and remove all edges in delete edges
from Mt′ and Mt+1. Then, each edge (u, v) ∈ new edges
is added to some matching M(x, t+1) ∈Mt+1, as described
below.

3In the special case p < k, we can replace k by p in Eq. (5), because since
there are at most p nodes per cluster, (k− p− 1) neighbors of each node in
that cluster will belong to other clusters.

Algorithm 1 describes the procedure of adding a single
directed edge (u, v) /∈ Nt to Mt′ . Firstly, from the subset of
k unit or 2k cross switches Sv

u = {swz ∈ SW |P(swz) =
Ci×Cj , u ∈ Ci, v ∈ Cj}, two switches, to which we refer as
opposite switch pair, are selected: one, where an input port u
is free (swx) and one in which the output port v is free (swy)
(lines 1 − 6). Note that it is possible that swx = swy , but at
least one swx and one swy must exist. Otherwise the addition
of (u, v) would imply degree > k for u or v in Nt+1.

The algorithm works around the idea of an augmenting path
between the pair of opposite matchings M(x, t′) ∈ Mt′ and
M(y, t′) ∈Mt′ , on switches swx and swy , respectively (lines
8−20). The Boolean variable check out is initially set to true
(line 7), because we have to check for conflict (adjacent edge)
on the output port v of switch swx. (It will be set to false
when the input port of some switch needs to be checked for
a conflict). Note that, by choice of swx, we know that u does
not have a neighbor in swx, otherwise, its input port would not
be available. So it is sufficient to check the v node’s neighbors
(lines 09−14). If there is a conflict, we remove the conflicting
edge (w, v) ∈M(x, t′) and set check out to false. In the next
iteration, we add (w, v) to the opposite matching M(y, t′) and
(since check out is false) check for conflict on the input port
w of swy (lines 15 − 20). Note that there can be only one
conflicting port at a time (either on the output or on the input
of the switch). This process is repeated ≤ 2(p−1) times until
there are no more conflicting edges in the matchings M(x, t′)
or M(y, t′) (line 08).

Batch editing: Algorithm 2 adds an optimization to Al-
gorithm 1 when multiple edges are inserted at once (e.g.,
a bidirectional edge in the case of half-duplex switches, or
a set of edges comprising one topological adjustment, such
as a splay). New edges are inserted iteratively. Each edge
(u, v) ∈ new edges is inserted into an intermediate network
state Mt′ by making a call to Algorithm 1 (lines 3 − 5).
Then all edges in Mt \Mt′ are removed from Mt+1 (lines

6 − 7), and all edges in Mt′ \ Mt are added directly to
Mt+1 (lines 8− 9). In this way, when inserting several edges
on the same switches, many updates become redundant. In
particular, instead of ≤ 2p updates per inserted edge ie, we
have p times the number of updated switches, sw′. Note that,
p ∗ sw′ ≤ 2 ∗ p ∗ ie for any set of inserted edges.

Lazy adjustments: Even though batch-editing reduces the
reconfiguration cost of simple operations, like splaying, an
even greater gain can be achieved in Lazy SANs [23], in which
topology reconfigurations are performed less often, or in so-
called epochs. During one epoch, the physical network remains
unmodified, while adjustments are performed on a copy of the
network graph, and after each epoch, both network versions
are synchronized.

Algorithm 1 AugPath(): single edge insertion
Require: Mt′ , SW∪, SW×, k, (u, v) /∈ Nt, u ∈ Ci, v ∈ Cj .

1: if i = j then %(unit switch)
2: Sv

u ← {swz ∈ SW∪| i · k ≤ z < (i+ 1) · k}
3: else %(cross switch)
4: Sv

u ← {swz ∈ SW×| idx(i, j) ≤ z < idx(i, j) + 2k}
5: swx ← swz ∈ Sv

u|(u,w) /∈M(z, t′) ∈Mt′ ,∀w ∈ Cj

6: swy ← swz ∈ Sv
u|(w, v) /∈M(z, t′) ∈Mt′ ,∀w ∈ Ci

7: check out ← true
8: while (u, v) /∈ (M(x, t′) ∪M(y, t′)) do
9: if check out then

10: add (u, v) to M(x, t′)
11: if ∃w ∈ Ci / {u}, (w, v) ∈M(x, t′) then
12: check out← false
13: remove (w, v) from M(x, t′)
14: (u, v)← (w, v)

15: else
16: add (u, v) to M(y, t′)
17: if ∃w ∈ Cj / {v}, (u,w) ∈M(y, t′) then
18: check out← true
19: remove (u,w) from M(y, t′)
20: (u, v)← (u,w)

21: return Mt′

A. OpticNet framework implementation

We implemented OpticNet as a simulation framework for
SAN algorithms in the context of TMT architectures, on top
of which an interested party can easily add or extend the
decision making and network adjustments specification of their
SAN algorithm. Like some of the earlier work on concurrent
SANs [26], [29], we adopt an optimistic approach to solve
concurrency conflicts. Messages that have been in the network
for longer are prioritized to avoid deadlocks and starvation.

Centralized control node: All communication between the
leaf and the spine layers is implemented via a centralized
controller node, that maintains a current global view of the
network topology and coordinates port-mapping decisions
among ToR and OCS switches. Moreover, the controller node

Algorithm 2 BatchEdit(): set-of-edges insertion
Require: Mt, SW∪, SW×, k, new edges.

1: Mt′ ←Mt

2: Mt+1 ←Mt

3: for (u, v) ∈ new edges do
4: if (u, v) /∈M(z, t′),∀M(z, t′) ∈Mt′ then
5: Mt′ ← AugPath(Mt′ , SW∪, SW×, k, (u, v))
6: for (u, v) ∈ M(z, t) ∈ Mt | (u, v) /∈ M(z, t′) ∈ Mt′

do
7: remove (u, v) from M(z, t+ 1) ∈Mt+1

8: for (u, v) ∈ M(z, t′) ∈ Mt′ | (u, v) /∈ M(z, t) ∈ Mt

do
9: add (u, v) to M(z, t+ 1) ∈Mt+1

10: return Mt+1

handles prioritization rules among nodes participating in cur-
rent adjustment or service (routing and forwarding) operations,
to ensure that they don’t participate in conflicting operations.

Rounds and time-slots: The simulation is divided into
synchronous rounds, and a message travels up to one hop per
round. Each round is divided into 4 time-slots, as follows:

• nodeInformStep: Leaf-layer (ToR) switches (nodes)
inform the controller node if they have messages to send;

• controllerStep: The controller node receives the
network messages and computes the current round ad-
justment operations, informing all leaf and spine-layer
switches which edges they must alter, and the network
nodes about their new neighbors (e.g., children or parent),
and grants permission to selected nodes to forward their
messages;

• nodeRoutingStep: The nodes that received permis-
sion to forward their messages do so;

• logRoundResults: Network nodes receive their mes-
sages, inform the controller node if they are their mes-
sage’s final destination, and the controller node logs all
relevant information about that round.

Multi-round adjustments: In the case of BST-based SANs,
most adjustments take 2 rounds, and some (e.g. a zig-zag
splay) take 3 rounds. In order to increase concurrency, Op-
ticNet handles conflicts around such adjustments differently
from some previous work [28]. Nodes participating in an
adjustment operation are not locked for more than one round.
To prevent multi-round adjustments from being interrupted by
messages with higher priority, messages related to unfinished
adjustments receive maximum priority.

OpticNet-SAN integration: The integration of OpticNet
with SAN algorithms basically involves three steps. First one
needs to create a new controller node class that inherits from
the NetworkController class, add a constructor for it
with the SAN algorithm specifications and a call to the parent
class constructor. Then all decision making and attribute up-
dating specific to the SAN algorithm (e.g., rank computation,
path weight update or random number generation, in the
case of a CBNet [29] implementation) is implemented as an

override of the adjustment operations or message handling.
Finally, it is needed to create a CustomGlobal class that
will be responsible for calling the network constructor, firing
messages into the network, defining the stop condition and any
simulation configuration specifications.

Source code: We made the source code of the Optic-
Net implementation available at https://github.com/
caiocaldeira3/OpticalNet. Note that, in this imple-
mentation, we assume N to be the family of all BSTs, and
switches to be half-duplex, so each switch has a reversed
(mirrored) copy added to the spine layer. Examples of SANs
algorithms implemented over OpticNet are provided further
on.

IV. BSTOPTICNET

SAN algorithms based on splaying adjustments [4], [28]
assume that Nt is a BST. It is possible to utilize special
properties of the BST graph to reduce the number of switches
a cross cluster need. Similarly, it is also possible to remove
the need of the augmenting path algorithm for edge insertions
as well as of iterating over switches for edge indexing. These
optimizations are free for cross clusters. However they incur
an increase in the number of switches a unit cluster utilizes.

Firstly, it is important to note that, while the degree of our
network is k = 3, the induced subgraph made by the union of
matchings in the cross switches can have, at most, a degree
of 2. This is in fact the case here because, given two clusters
Ci and Cj , if i < j each vertex u from Ci will be smaller
than any vertex v from Cj . This means that u can have only
one child and parent from Cj at a given point. Since we can
ensure the maximum degree of a cross cluster is at most 2, it is
possible to represent it with only four switches instead of six,
which would be the case for a regular graph of constant degree
k = 3, resulting in |SW |BST = 3C + 4

(
C
2

)
= C(2C + 1).

A. Mirroring Switches

In practical scenarios the cost of reconfigurations can be
much greater than that of routings. This provides incentive
to minimize the number of reconfigurations your system
performs at a given moment. For cross switches it is possible
to structure our edges to make it so that edge indexing can
be computed with a static math operations, and that edge
insertions require only two link reconfigurations.

This abstraction requires us to split the 4 switches we use
representing cross clusters into two pairs of Downward and
Upward switches. The directed edges (u, v) where u is the
parent of v will be contained in Downward Switches and the
directed edges (u, v) where u is a child of v will be contained
in Upward Switches. This way we can assign all left edges to
a pair of Downward and Upward switches and all right edges
to the other pair of Downward and Upward switches.

It is easy to see that this configuration is valid, since each
vertex can have at most one left child its input and output
ports on the Downward and Upward switches for left edges
respectively will always be available when inserting an edge.
Similarly, since each vertex can have at most one parent, its

output and input on the Downward and Upward switches for
left edges respectively will always be available when inserting
an edge. This works analogously for right edges. Given that we
group Downward and Upward switches similarly for all cross
clusters, those with left edges followed by those with right
edges for example, edge indexing can be performed with only
one static math operation.

With Mirror Switches the benefits of applying Batch-Edit
would be reserved to lazy reconfigurations, as there would not
be conflicting paths between inserting edges. Also, while using
the regular edge representation, given that splays have one
edge reconfiguration that is simply a change of parenthood,
no link would be required to be replaced. This is not the case
for Mirror Switches. A change of parenthood means a change
between a left or right edge; a change of switches is, therefore,
required. However, this extra edge reconfiguration normally
will not represent more link changes than the p factor involved
in the augmenting path algorithm.

B. Unit Cluster Mirroring

Furthermore, it is also possible to apply the same logic
to unit clusters if we use four switches, instead of three, to
represent them. This would result in |SW |BST = 4C+4

(
C
2

)
=

C(2C+2) clusters. The increase in cost is linear on the number
of clusters whereas the number of switches involved in a splay
is divided by half, and the number of link updates divided by
p.

To summarize, it is important to take into account the
specifics of your system when deciding which implementation
of unit and cross clusters to use for a BST reconfigurable
algorithm. Switch and link reconfiguration costs as well as
budget to acquire new switches can influence which approach
may be optimal for your system.

In Figure 1b we illustrate an example of four p = 8-port
unit switches connecting a k = 4-degree network of n = 8
nodes. In Figure ?? we illustrate a BST network on n = 8
nodes, connected via 8 unit and 4 cross p = 4-port full-duplex
switches.

V. ANALYSIS

In this section we analyze the correctness and optimality
of OpticNet in the MM’. First we prove that Algorithm 1
terminates and correctly inserts new edges into the network.

Lemma 1. Let N be the family of constant degree (≤ k)
graphs on a set V of n nodes. Let SW = SW∪∪SW× be the
set of spine-layer p-port switches,Mt = Nt ∈ N be the set of
matchings computed by OpticNet at time t, and let (u, v) /∈ Nt

be a directed edge to be inserted. If Nt ∪ {(u, v)} ∈ N then
Algorithm 1 terminates in at most 2(p − 1) iterations and
returns a new set of matchings Mt′ = Nt ∪ {(u, v)} ∈ N ,
such that ∃swx ∈ SW | (u, v) ∈M(x, t′) ∈Mt′ .

Proof. OpticNet assigns either 2k cross (if i ̸= j) or k unit (if
i = j) switches swz ∈ SW | P(swz) = Ci × Cj , u ∈ Ci ⊆
V, v ∈ Cj ⊆ V .

0

4

1

5

2 6

3

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

5

6

7

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

5

6

7

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

5

6

7

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

5

6

7

4

5

6

74

5

6

7

4

5

6

7

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

4

5

6

7

4

5

6

7

0

1

2

3

0

1

2

3

Fig. 2. Difference between Mirrored and Generic Optical Net representation for a BST with 8 vertices and k = 4

Since the out-degree of u and the in-degree of v must be
< k in Nt, there must exist at least one switch swx ∈ Su

v

(represented by M(x, t) ∈ Mt) such that the input port
u is free, and at least one swy ∈ Su

v (represented by
M(y, t) ∈ Mt) such that the output port v is free. If x = y,
then M(x, t′)←M(x, t) ∪ {(u, v)}, and we are done.

If x ̸= y, let M = M(x, t) ∪ M(y, t) ∪ {(u, v)}. Since
|M | ≤ 2(p − 1) + 1 and each port w ∈ Ci ∪ Cj appears
at most twice in M , M can be partitioned into two disjoint
matchings M(x, t′) and M(y, t′) of size ≤ p, as described in
Algorithm 1 (lines 7− 20).

The algorithm works around the idea of an augmenting path
between matchings M(x, t) and M(y, t), on switches swx and
swy , respectively. The Boolean variable check out is initially
set to true (line 7), because we have to check for conflict
(adjacent edge) on the output port v of switch swx. (It will
be set to false when the input port of some switch needs to
be checked for a conflict). Note that, by choice of swx, we
know that the input port u is free on swx, so it is sufficient
to check for conflict on the output port v of swx. If there is
a conflict, we remove the conflicting edge (w, v) ∈ M(x, t)
(leaving the input port w free on swx) and set check out to
false. In the next iteration, we add (w, v) to M(y, t) (where the
output port v is free, by choice of swy) and (since check out
is false) check for conflict on the input port w of swy . If
there is another conflict, edge (w,w′) ∈M(y, t) is moved to
M(x, t). Note that there can be only one conflicting port at a
time (either on an output or on an input port), and it will have
been left free on the other switch in the previous iteration.

Since the augmenting path does not have repeated vertices
(since M is comprised of two sets of ≤ (p− 1) independent
edges), this process is repeated ≤ 2(p − 1) times until M
has been partitioned into two disjoint matchings M(x, t′) and
M(y, t′). For contradiction, suppose there are 2(p− 1) + 1 =
(2p− 1) conflicting edges in the augmenting path. The (2p−
1)st edge would have to be of the form (u,w) ∈ M(x, t),
which contradicts the choice of swx as having the u input-
port free (and the fact that |M(x, t)| ≤ (p− 1)).

We now prove that OpticNet can represent any network
Nt ∈ N at time t, i.e., every edge is assigned to a matching
on some switch.

Theorem 1. Let N be the family of constant degree (≤ k)
graphs on a set V of n nodes. Let SW be a set of spine-layer
p-port switches and Mt = Nt ∈ N be the set of matchings
computed by OpticNet at time t. We have that ∀(u, v) ∈ V ×V ,
if (u, v) ∈ Nt, then ∃swx ∈ SW | (u, v) ∈M(x, t) ∈Mt.

Proof. W.l.g, we assume that edges are directed, i.e., switches
are half-duplex. The proof is by induction on the number of
edges.

Base case: If Nt has no edges, the claim is vacuously true
since (u, v) /∈ Nt,∀(u, v) ∈ V × V .

I.H.: ∀(u′, v′) ∈ V × V , if (u′, v′) ∈ N ′
t = Nt \ (u, v) then

∃swx′ ∈ SW | (u′, v′) ∈M(x′, t), M(x′, t) ∈M′
t = N ′

t .
By I.H., every edge in N ′

t is assigned to some matching
in M′

t. Consider an edge (u, v) /∈ N ′
t such that Nt = N ′

t ∪
{(u, v)} ∈ N , i.e., the insertion of the new edge preserves
degree ≤ k of the underlying graph. By Lemma 1, Algorithm
1 returns a set of matchings Mt = Nt, such that ∃swx ∈
SW | (u, v) ∈M(x, t) ∈Mt. This concludes the proof.

The following theorem proves the correctness for the special
case of BST.

Theorem 2. Let Tt be any BST on n nodes at time t, and let
SW andMt be the set of spine-layer p-port switches and the
set of matchings computed by OpticNet. If (u, v) ∈ Tt then
∃swx ∈ SW |(u, v) ∈M(x, t),M(x, t) ∈Mt.

Proof. Case 1 (cross switch, i ̸= j): Since the induced
subgraph made from the vertices within Ci and Cj and only
the edges that connect them on a BST have a constant degree
of 2. This proof follows from the case 1 on Theorem 1

Case 2 (unit switch, i = j): W.l.g, this proof follows from
Theorem 1.

We proceed by showing that the number of spine-layer
switches is optimal.

Theorem 3. Let N be the family of constant degree (≤ k)
graphs on a set V of n nodes, and OPT we the minimum-
size set of spine-layer switches with p in-out ports needed to
connect n leaf-layer switches via a TMT two-layer architecture
in the MM ′. Let SW be a set of spine switches computed by
OpticNet and C =

⌈
n
p

⌉
, then

|OPT | ≥ |SW | = C2

⌈
k

2

⌉
.

Proof. For simplicity sake, we assume that loop edges are
possible (v, v),∀v ∈ V in some network topologies Nt ∈ N .

Let OPT be any feasible solution for the MM’-PMP. Let
P(swi) ⊆ V × V, |P(swi)| ≤ p2 be the (static) in-out port-
set of a spine-layer switch swi ∈ OPT . Let P(v) be the
port-set of a leaf-layer switch v ∈ V . And let P(OPT) =
∪swi∈OPTP(swi) and P(V) = ∪v∈V P(v) be the (total) port-
sets of spine and leaf layers, respectively.

Note that there must be a one-to-one assignment between
leaf and spine-layer ports, so |P(OPT)| ≥ |P(V)|. Moreover,
since each spine switch connects p2 in-out port pairs, we have:

|OPT | ≥ |P(OPT)|
p2

≥ |P(V)|
p2

.

At any time t, each leaf switch v ∈ V might need k
simultaneous connections to any subset of k nodes out of n.
So we have that P(v) ≥ k · n, ∀v ∈ V . Since edges are not
directed (full-duplex), it follows that:

|OPT | ≥ P(V)

p2
≥

⌈
k

2

⌉
· n

2

p2
≥ C2

⌈
k

2

⌉
.

Finally, we show that any SAN algorithm runs on top of
OpticNet, preserving the total cost guarantees.

Theorem 4. Let N be the family of constant degree (≤ k)
graphs on a set of n nodes. Consider any initial N0 ∈
N , a sequence of m messages σ and a SAN algorithm
A. Let SW be the set of spine-layer p-port switches and
Mt = ∪swx∈SWM(x, t) be the set of matchings computed
by OpticNet at time t, such that Mt = Nt ∈ N . The total
service, edge and switch adjustment, and work costs incurred
by A on top of OpticNet to deliver all messages in σ are:

Srv(OpticNet(A), N0, σ) = Srv(A, N0, σ),

LinkAdj(OpticNet(A), N0, σ) ≤ 2p · LinkAdj(A, N0, σ),

SwAdj(OpticNet(A), N0, σ) ≤ 2 · LinkAdj(A, N0, σ),

Cost(OpticNet(A), N0, σ) = O(Cost(A, N0, σ)).

Proof. An adjustment operation can be defined in terms of a
set of edges to be removed or added to a network topology
at each time t. Algorithm 1 implements an edge-addition
operation with cost ≤ 2p using the edge-distance metric
and cost ≤ 2 using the switch-cost metric. Therefore, the

asymptotic amortized cost of a SAN algorithm based on
splaying, such as SplayNet [4], DiSplayNet [26] or CBNet
[28], combined with OpticNet, remains the same.

A. Mirror Switches

Theorem 5. Let Tt be any BST on n nodes at time t,
let Mt be the set of matchings computed by OpticNet. Be
SWm the set of mirrored switches of a given cluster Ci and
(u, v) ∈ Tt such that u, v ∈ Ci. Then ∃swx ∈ SWM |(u, v) ∈
M(x, t),M(x, t) ∈Mt

Proof. Case 1 (Downward, u is parent of v) Let SWD ∈
SWM the set of Downward switches and SWD =
{SWD

L , SWD
R }. W.l.g, let’s assume that u > v. Suppose

v’s output port is occupied, this would imply that ∃(w, v) ∈
SWD

L |w ̸= u, this is a contradiction since v can have at most
one parent. Suppose on the other hand that u’s input port is
occupied, this would imply that ∃(u,w) ∈ SWD

L |w ̸= v, this
is a contradiction since u can have at most one left child.

Case 2 (Upward, u is child of v) Let SWU ∈ SWM

the set of Upward switches and SWU = {SWU
L , SWU

R }.
W.l.g, let’s assume that u < v. Suppose u’s input port is
occupied, this would imply that ∃(u,w) ∈ SWU

L |w ̸= v, this
is a contradiction since u can have at most one parent. Suppose
on the other hand that v’s output port is occupied, this would
imply that ∃(w, v) ∈ SWU

L |w ̸= u, this is a contradiction
since v can have at most one left child.

VI. EVALUATION

In this section we present our experimental results. We
implemented three SAN algorithms on top of OpticNet:

• SN4: SplayNet [4], [30] centralized and sequential gen-
eralization of a splay tree;

• DSN: DisplayNet [26] distributed and concurrent version
of SplayNet;

• CBN5: CBNet [29] distributed and concurrent generaliza-
tion of CBTrees [27].

We used the following metrics, defined in Section II, to
evaluate the simulation results:

• Service cost: the number of times a message was shared
between adjacent nodes in the path from it’s source to it’s
destination, we also compute the number of times a node,
switch or input port was part of a routing operation.

• Adjustment edge-distance cost: the number of ports that
were altered in an adjustment, caused by a message. For
example, zig-zig rotation requires up to 8∗p link changes
and a zig-zag requires up to 16 ∗ p link updates.

• Adjustment switch cost: the number of switches whose
ports were altered. For example, a zig-zig rotation re-
quires up to 8, and a zig-zag requires up to 16 switch
updates.

• Throughput: the average number of delivered messages
per round.

4https://github.com/caiocaldeira3/SemiDisplayOpticNet
5https://github.com/caiocaldeira3/CBOpticalNet

• Activity: the number of times a node, port, switch or re-
quest has been used in a routing or adjustment operation.

• Total work: the total number of routing and adjustment
operations in the network.

A. Workload traces

To measure the locality of reference present in a workload,
we use the definition of trace complexity [16], which leverages
only randomization and data compression operations. The
amount of locality present in a workload can be measured
based on the entropy of the communication sequence. The
concept of entropy is related to the amount of information or
the ability to compress the data. Intuitively, workloads with a
low locality structure tend to have random sequences of com-
munication pairs and, consequently, a low data compression
rate. High-locality sequences tend to have a specific structure
between requests that allows for better compression. In partic-
ular, we distinguish temporal and non-temporal components.

We used the following workload traces in our experiments,
grouped according to their locality characteristics:

• High non-temporal and low temporal: ProjectToR
[31] describes the communication probability distribution
among 8, 367 pairs of nodes in a network of n = 128
nodes (top of racks), randomly selected from 2 produc-
tion groups, executed between map-reduce operations,
index builders, database and storage systems. We sample
a sequence of m = 10, 000 independent orders and
identically distributed (i.i.d.) in time by the given com-
munication matrix and repeat each experiment 30 times.
Skewed corresponds to an artificial sequence of 10, 000
communication requests in a network of n = 128 nodes,
using the method from [16]. The non-temporal locality
component was produced using the Zipf distribution.

• High temporal and low non-temporal: The traces of
PFabric [32] were generated by executing simulation
scripts in NS2. We sample a sequence of m = 1, 000, 000
requests from a network of 144 nodes. Bursty was
generated artificially with m = 10, 000 and n = 128,
using the method from [16].

• Low locality: The Facebook trace consists of real Fbflow
packets collected from the production clusters of Face-
book. The per-packet sampling is uniformly distributed
with rate 1:30000, flow samples are aggregated every
minute, and node IPs are anonymized. We mapped the
anonymized IPs to a consecutive value range starting at
0. This resulted in a sequence of 1, 000, 000 requests,
originated in a 24-hour time window, in a network
comprising 159 nodes.

To space the requests in time and make the timestamp
sequences more realistic, we used a Poisson distribution with
λ = 0.25 to determine the time of the entrance of each
message in the network.

B. Results

Total work and throughput: In Figures 3 and 4, we can
see blackthe total work and throughput for all workloads.

Note that these metrics are not affected by the OpticNet
framework. What we can observe is that CBNet performs
almost no adjustments, compared to SplayNet and DiSplaynet,
and has a higher total (service) cost only in the Bursty
workload. This is due to the extremely high temporal locality
of this workload, which gives advantage to more aggressive
reconfiguration algorithms, like SplayNet and DiSplayNet. We
can also observe that the concurrent SANs have a much higher
throughput than the sequential one (SN).

Activity: In Figures 5 and 6 we plot the CDFs of the
percentage of active rounds and active ports per switch, for all
workloads respectively, (except ProjecToR, which we discuss
separately). In all plots, the smallest switch size was used
(p = 8) for a network with n ∈ {128, 144, 367} nodes, so the
number of switches was quite high (n′ ∈ {544, 684, 4324}).

Analyzing the results in Figure 5, we observe that most of
the switches experience a significant amount of idle time. This
is more explicit when dealing with SAN algorithms with low
levels of adjustment, such as CBNet. In most simulations, the
up time of most switches does not go over 60% of rounds.
In some cases most switches aren’t even up in any round.
With SAN algorithms that are more adjustment intensive, like
SplayNet and DiSplayNet, we see that the switch activity is
better distributed, and fewer switches have no up time.

Analyzing the results in Figure 6, which shows how many
ports of a switch have been active at least in one round, we
get similar results in nature, with CBNet presenting a higher
concentration of active ports, while SplayNet and DisplayNet
present a more balanced port activity among switches.

When comparing the network activity over the the Bursty,
Skewed, PFabric and Facebook datasets, we would like to
point out that since splay operations typically involve more
than one switches, we can see that DiSplayNet shows a more
even distribution of active rounds per switch than CBNet.
SplayNet, however, due to its sequential nature, presents lower
percentiles than its distributed counter-part.

Another interesting observation is the discrepancy between
active ports percentage between CBNet and DiSplayNet and
SplayNet, with CBNet presenting a much higher concentration
of active ports, even in the longer workload sequences (PFabric
and Facebook, where m = 1, 000, 000). Over this longer
sequences (Figures 6c and 6d), we also observe a congruence
in the results for DiSplayNet and SplayNet.

Variable switch size (p): In Figures 7 and 8 we plot the
CDFs of the percentage of active rounds and active ports per
switch, for the ProjecToR workload, with a variable number
of switch ports. We can analyze more carefully the impact of
a greater number of switches on the network activity. We can
see clearly, for example, that by increasing the switch size, the
number of completely inactive switches drops dramatically. In
particular, the cap for active port percentage of a switch for
CBNet decreases with higher number of ports, while SplayNet
and DisplayNet actually manage to distribute the workload
more evenly over the different switch ports.

Fig. 3. Total work (all workloads): m = 10, 000: (a) ProjecToR, (b) Bursty, (c) Skewed; m = 1, 000, 000: (d) Facebook, (e) PFabric.

Fig. 4. Throughput (all workloads): m = 10, 000: (a) ProjecToR, (b) Bursty, (c) Skewed; m = 1, 000, 000: (d) Facebook, (e) PFabric.

Fig. 5. CDF Active rounds percentage per switch: constant switch size p = 8, n ∈ {128, 144, 367} (a) Bursty, (b) Skewed, (c) Facebook, (d) PFabric.

Fig. 6. CDF Active ports percentage per switch: constant switch size p = 8, n ∈ {128, 144, 367} (a) Bursty, (b) Skewed, (c) Facebook, (d) PFabric.

VII. RELATED WORK

Reconfigurable network topologies can be grouped in two
basic types: demand-oblivious, e.g. [8], [9], [33], [34] and
demand-aware, e.g. [3]–[5], [19], [24], [26], [35]–[40], or
a combination of both, e.g., Cerberus [41]. Most existing
demand-aware architectures rely on an estimation of traffic
matrices [5], [17], [37], [38], [42], [43] which can limit
the granularity and reactivity of the network, but there are
also more fine-grained approaches such as [24], [35], which
however rely on a centralized control.

The majority of datacenter networks with on-demand re-
configurations use full crossbar, 3D-MEMS-based OCS [18],
or Wavelength Division Multiplexing-based switching [17].
Several prototypes based on OCS have been built, and their
advantages demonstrated, e.g., the Helios prototype [5] uses
a commercially available Glimmerglass OCS with 64 ports,
while OSA [19] provides a testbed that consists of a Polatis

Series 1000 32-port OCS. To operate such RDCNs efficiently,
the self-adjusting network topology has to be mapped to a set
of OCS dynamically in real-time.

While promising performance results have been demon-
strated with various prototypes of demand-aware reconfig-
urable networks, today, it is often challenging to experiment
with these technologies, as they are usually based on custom-
built prototypes and rely on tailored hardware and software
which is not publicly available. One example of a framework
that supports experimentation and reproducibility is ExReC
[44]. It uses off-the-shelf hardware (Polatis Series 6000n
32 × 32 OCS [25]) for evaluating different hybrid reconfig-
urable topologies and applications.

The closest work to ours is probably [23], where online
strategies are proposed to adapt SAN algorithms for the match-
ing model [22], based on spaced out (less frequent) network
adjustments using existing (sequential) SAN algorithms, such

Fig. 7. ProjecToR: CDF Active rounds percentage per switch: variable switch size p ∈ {8, 32, 64, 128}, n = 128

Fig. 8. ProjecToR: CDF Active ports percentage per switch: variable switch size p ∈ {8, 32, 64, 128}, n = 128.

as SplayNets [4] and ReNets [24].

VIII. CONCLUSION

Even though emerging hardware reconfiguration technolo-
gies introduce an additional degree of freedom to the dat-
acenter network design problem, they still face challenging
system and algorithm design problems. Due to additional
control logic and several milliseconds latency of the state-of-
the-art demand-aware optical switches, their cost can only be
amortized for large flows over longer terms.

In this work, we used a synchronous distributed system
model. OpticNet assumes a consistent and communication-
closed round structure provided by the distributed system.
While many solutions to problems in distributed computing
assume lock-step rounds, real-world distributed systems are
usually not perfectly synchronous. In practice, message loss
is present as a result of job dropping by a real-time scheduler
or an unreliable communication channel.

While our contribution is still theoretical in nature, we be-
lieve it constitutes an interesting step forward toward practical
self-adjusting networks. Our work opens interesting avenues
for future research, such as considering implications on net-
work and transport layers and understanding the trade-off
between maximizing throughput and minimizing latency in
both demand-aware and oblivious self-adjusting networks [34].

REFERENCES

[1] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center
networks,” Proc. ACM Workshop on Hot Topics in Networks (HotNets),
2009.

[2] C. Avin and S. Schmid, “Toward demand-aware networking: A theory
for self-adjusting networks,” in ACM SIGCOMM Computer Communi-
cation Review (CCR), 2018.

[3] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper,
“Projector: Agile reconfigurable data center interconnect,” in Proc. ACM
SIGCOMM. New York, NY, USA: ACM, 2016, pp. 216–229.

[4] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler,
and Z. Lotker, “Splaynet: Towards locally self-adjusting networks,”
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1421–1433, Jun. 2016.

[5] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” ACM
SIGCOMM Computer Communication Review, vol. 40, no. 4, pp. 339–
350, 2010.

[6] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network designs
of bounded degree,” in Proc. International Symposium on Distributed
Computing (DISC), 2017.

[7] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,
H. Shah, and A. Tanwer, “Firefly: A reconfigurable wireless data
center fabric using free-space optics,” in ACM SIGCOMM Computer
Communication Review, vol. 44. ACM, 2014, pp. 319–330.

[8] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” arXiv preprint arXiv:1903.12307, 2019.

[9] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proc. ACM SIGCOMM, 2017, pp. 267–280.

[10] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” Proc. ACM SIGCOMM Computer Communication Review
(CCR), vol. 45, no. 4, pp. 183–197, 2015.

[11] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, ser.
nsdi’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 399–412.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2482626.2482665

[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” Proc. ACM SIGCOMM Computer Communi-
cation Review (CCR), vol. 39, no. 4, pp. 63–74, 2009.

[13] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “Mdcube: a high
performance network structure for modular data center interconnection,”
in Proc. ACM International Conference on Emerging Networking Ex-
periments and Technologies (CONEXT), 2009, pp. 25–36.

[14] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla,
“Beyond fat-trees without antennae, mirrors, and disco-balls,” in Proc.
ACM SIGCOMM, 2017, pp. 281–294.

[15] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers, randomly,” in Proc. USENIX Symposium on Networked
Systems Design and Implementation (NSDI), vol. 12, 2012, pp. 17–17.

[16] C. Avin, M. Ghobadi, C. Griner, and S. Schmid, “On the complexity of
traffic traces and implications,” in Proc. ACM SIGMETRICS, 2020.

[17] L. Chen, K. Chen, Z. Zhu, M. Yu, G. Porter, C. Qiao, and S. Zhong, “En-
abling wide-spread communications on optical fabric with megaswitch,”
ser. NSDI’17, 2017, p. 577–593.

[18] J. Zerwas, W. Kellerer, and A. Blenk, “What you need to know about
optical circuit reconfigurations in datacenter networks,” in The 33nd
International Teletraffic Congress (ITC 33), 2021.

[19] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen, “Osa: An optical switching architecture for data
center networks with unprecedented flexibility,” IEEE/ACM Transactions
on Networking (TON), vol. 22, no. 2, pp. 498–511, 2014.

[20] D. Sleator and R. Tarjan, “Self-adjusting binary search trees,” Journal
of the ACM (JACM), vol. 32, no. 3, pp. 652–686, 1985.

[21] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, Feb. 1985.

[22] C. Avin, C. Griner, I. Salem, and S. Schmid, “An online matching model
for self-adjusting tor-to-tor networks,” 2020.

[23] E. Feder, I. Rathod, P. Shyamsukha, R. Sama, V. Aksenov, I. Salem,
and S. Schmid, “Brief announcement: Toward self-adjusting networks
for the matching model,” in 33rd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2021.

[24] C. Avin and S. Schmid, “Renets: Statically-optimal demand-aware
networks,” in Proc. SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS), 2021.

[25] “Polatis Series 6000,” www.polatis.com, [Online; accessed 10-May-
2022].

[26] B. Peres, O. Souza, O. Goussevskaia, S. Schmid, and C. Avin, “Dis-
tributed self-adjusting tree networks,” in Proc. IEEE INFOCOM, 2019.

[27] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tarjan,
“Cbtree: A practical concurrent self-adjusting search tree,” in Proc.
DISC. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 1–15.

[28] O. A. de O. Souza, O. Goussevskaia, and S. Schmid, “Cbnet:
Demand-aware tree topologies for reconfigurable datacenter networks,”
Computer Networks, vol. 213, p. 109090, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128622002249

[29] O. A. d. O. Souza, O. Goussevskaia, and S. Schmid, “Cbnet: Minimizing
adjustments in concurrent demand-aware tree networks,” in IEEE Int.
Parallel and Distributed Processing Sym. (IPDPS), 2021, pp. 382–391.

[30] C. Avin, B. Haeupler, Z. Lotker, C. Scheideler, and S. Schmid, “Locally
self-adjusting tree networks,” in Proceedings of the 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, ser.
IPDPS ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
395–406. [Online]. Available: http://dx.doi.org/10.1109/IPDPS.2013.40

[31] “Projector dataset,” www.microsoft.com/en-us/research/project/
projector-agile-reconfigurable-data-center-interconnect, 2016.

[32] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “Pfabric: Minimal near-optimal datacenter transport,”
in Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 435–446. [Online]. Available:
https://doi.org/10.1145/2486001.2486031

[33] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,
F. Karinou, S. Lange, K. Shi, B. Thomsen et al., “Sirius: A flat datacenter
network with nanosecond optical switching,” in Proc. ACM SIGCOMM,
2020, pp. 782–797.

[34] D. Amir, T. Wilson, V. Shrivastav, H. Weatherspoon, R. Kleinberg, and
R. Agarwal, “Optimal oblivious reconfigurable networks,” in Proc. of
the 54th Annual ACM SIGACT Symposium on Theory of Computing,
ser. STOC 2022, 2022, p. 1339–1352.

[35] J. Kulkarni, S. Schmid, and P. Schmidt, “Scheduling opportunistic links
in two-tiered reconfigurable datacenters,” in 33rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2021.

[36] C. Avin, A. Hercules, A. Loukas, and S. Schmid, “rdan: Toward robust
demand-aware network designs,” in Information Processing Letters
(IPL), 2018.

[37] S. B. Venkatakrishnan, M. Alizadeh, and P. Viswanath, “Costly circuits,
submodular schedules and approximate carathéodory theorems,” Queue-
ing Systems, vol. 88, no. 3-4, pp. 311–347, 2018.

[38] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun,
T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating
microsecond circuit switching into the data center,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 447–458, Aug. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2534169.2486007

[39] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus:
a topology malleable data center network,” in Proc. ACM Workshop on
Hot Topics in Networks (HotNets), 2010.

[40] E. Feder, I. Rathod, P. Shyamsukha, R. Sama, V. Aksenov, I. Salem,
and S. Schmid, “Lazy self-adjusting bounded-degree networks for the

matching model,” in Proc. IEEE Conference on Computer Communica-
tions (INFOCOM), 2022.

[41] C. Griner, J. Zerwas, A. Blenk, S. Schmid, M. Ghobadi, and C. Avin,
“Cerberus: The power of choices in datacenter topology design (a
throughput perspective),” in Proc. ACM SIGMETRICS, 2022.

[42] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp.
327–338, 2011.

[43] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network design
with minimal congestion and route lengths,” in Proc. IEEE INFOCOM,
2019.

[44] J. Zerwas, C. Avin, S. Schmid, and A. Blenk, “ExRec: Experimental
Framework for Reconfigurable Networks Based on Off-the-Shelf Hard-
ware,” in Proc. of the Symposium on Architectures for Networking and
Communications Systems, ser. ANCS, 2021, p. 66–72.

