Raciocinio Colaborativo em Grafos para
Recomendacdo: Um Estudo de Reprodutibilidade e
Extensoes Baseadas em Logica Fuzzy e Atributos

Jorge Augusto de Lima e Silva
Departamento de Ciéncia da Computacio
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil
jorgesilva@dcc.ufmg.br

Abstract—Este trabalho investiga a aplicacdo de Inteligéncia
Artificial Neuro-Simbélica em Sistemas de Recomendacio, com
foco no modelo Graph Collaborative Reasoning (GCR). Enquanto
sistemas tradicionais enfrentam desafios de interpretabilidade
e esparsidade, o GCR propoe modelar a recomendacio como
um raciocinio logico dedutivo sobre grafos. Este estudo ap-
resenta trés contribuicées principais. Primeiro, realiza-se um
estudo critico de reprodutibilidade, reimplementando o modelo
integralmente; os resultados obtidos superam significativamente
as métricas reportadas na literatura original, estabelecendo
novos baselines de desempenho para o GCR. Segundo, avalia-
se o FuzzGCR, uma extensio baseada em logica fuzzy nao-
paramétrica; a andlise demonstra que a rigidez axiomatica
das t-normas causa saturacio de gradientes em cadeias logicas
profundas, evidenciando a necessidade de relaxamento neural em
grafos complexos. Terceiro, propoe-se 0 FA-GCR (Feature-Aware
GCR), que integra atributos semanticos ao raciocinio légico. Os
experimentos nos datasets MovieLens demonstram que o FA-
GCR, operando exclusivamente sobre atributos (sem IDs), supera
o modelo base e baselines tradicionais, validando a hipétese
de que o enriquecimento seméntico potencializa a generalizacao
indutiva em arquiteturas neuro-simbdlicas.

Index Terms—Sistemas de Recomendacao, IA Neuro-
Simbélica, Graph Collaborative Reasoning, Logica Fuzzy, Re-
produtibilidade, Aprendizado de Representacao

I. INTRODUCAO

Os sistemas de recomendagdo tornaram-se componentes
onipresentes em plataformas digitais modernas, desempen-
hando um papel crucial na filtragem e priorizacdo de grandes
volumes de informagdes para usudrios com capacidade de pro-
cessamento limitada [1], [2]. O objetivo primordial desses sis-
temas € balancear os interesses das plataformas e dos usudrios,
promovendo a exposi¢do seletiva de itens com alta proba-
bilidade de aceitacdo, baseada em preferéncias individuais e
comportamentos passados [3], [4]. Apesar dos avangos sig-
nificativos impulsionados pelo Aprendizado Profundo (Deep
Learning), esses sistemas ainda enfrentam desafios estruturais
notdveis, como a esparsidade de dados, o problema do inicio
frio (cold-start) [5], [6] e a baixa interpretabilidade dos mod-
elos, que frequentemente operam como “caixas-pretas” [7].

Nesse contexto, a Inteligéncia Artificial Neuro-Simbdlica
emerge como um paradigma promissor, buscando integrar a
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capacidade de aprendizado representacional e generalizacio
das redes neurais [8] (andloga ao “pensamento rapido” [9])
com o raciocinio l6gico e estruturado da IA simbdlica (andloga
ao “pensamento lento”). Essa abordagem visa desenvolver
sistemas mais robustos, capazes de aprender a partir de dados
e, simultaneamente, realizar inferéncias logicas explicaveis
sobre as recomendagdes geradas [10].

O desenvolvimento da drea fundamenta-se na proposicdo de
arquiteturas pioneiras, notadamente o Logic-Integrated Neu-
ral Network (LINN) [11], que introduziu a capacidade de
aprender operadores 16gicos modulares, e o Neural Collab-
orative Reasoning (NCR) [12], que aplicou esses conceitos
a recomendacdo personalizada. A partir dessa base tedrica, o
modelo Graph Collaborative Reasoning (GCR) [13] emerge
como um avango significativo, estendendo a l6gica do NCR
para a tarefa geral de preenchimento de arestas (link predic-
tion) em grafos. O GCR destaca-se por traduzir a estrutura
topolégica do grafo em expressdes logicas (Cldusulas de
Horn), permitindo realizar inferéncias relacionais complexas
onde a validade de uma conexao alvo é deduzida logicamente
a partir das conexdes vizinhas, utilizando médulos neurais para
aprender a estrutura logica subjacente.

No entanto, a literatura aponta limitacdes nas abordagens
atuais de raciocinio colaborativo neural. Primeiramente, mod-
elos fundamentais como o NCR — e, por consequéncia,
seus derivados como o GCR — dependem de redes neurais
parametrizadas para simular operagdes l6gicas, o que pode ndo
garantir a satisfacdo estrita de axiomas légicos fundamentais.
Essa limitacdo é abordada pelo Fuzzy Collaborative Reasoning
(FuzzCR) [14], que foi desenvolvido como uma extensdo do
proprio NCR (ao invés do GCR) com o objetivo de impor
maior consisténcia tedrica e generalizagdo. O FuzzCR substitui
os moédulos neurais aprendidos do NCR por operadores de
l6gica fuzzy ndo-paramétricos, garantindo o cumprimento de
regras logicas cldssicas. Em segundo lugar, embora eficazes
em capturar a estrutura do grafo, modelos como o GCR
subutilizam a riqueza semantica dos atributos de usudrios e
itens, uma lacuna que o modelo Feature-Enhanced Neural
Collaborative Reasoning (FENCR) [15] busca preencher ao



integrar embeddings de features na légica de decisdo.

Adicionalmente, existe um desafio pratico de reprodutibil-
idade na drea, visto que o cédigo original do GCR ndo se
encontra publicamente disponivel, dificultando a valida¢do de
seus resultados e a construcdo de novas pesquisas sobre essa
base.

Diante desse cendrio, este trabalho aprofunda a investigagdo
sobre o Raciocinio Colaborativo em Grafos, oferecendo as
seguintes contribuicdes:

1) Reavaliacao de Reprodutibilidade: Uma investigacdo
sobre a reprodutibilidade do GCR [13]. Na auséncia do
cddigo original para validag@o cruzada, reconstruimos o
modelo seguindo os protocolos descritos na publicacio
base. Os resultados indicam que, sob as configura¢des
reportadas, uma implementagcdo otimizada é capaz de
superar as métricas de referéncia, sugerindo que o de-
sempenho do modelo foi subestimado.

2) Anadlise de Limitacoes da Logica Fuzzy (FuzzGCR):
Uma investigacdo empirica sobre a substituicdo de
médulos neurais por operadores fuzzy (Produto, Godel,
Smooth). Os resultados evidenciam um trade-off critico
entre consisténcia tedrica e treinabilidade em arquite-
turas profundas.

3) Extensao Semantica (FA-GCR): O desenvolvimento
de uma arquitetura que incorpora embeddings de
atributos diretamente no processo de raciocinio. A
variante proposta, capaz de operar sem identifi-
cadores de usudrios/itens, demonstra superioridade em
generalizacdo e robustez contra a esparsidade.

Para validar tais proposi¢des, conduzimos uma avaliacdo
experimental rigorosa em miiltiplos dominios (e-commerce e
entretenimento). Os resultados discutidos a seguir transcendem
a simples comparacdo de métricas, fornecendo evidéncias
empiricas criticas sobre os limites da légica estrita e o po-
tencial da semantica na unificacdo entre raciocinio dedutivo e
aprendizado de representacdo.

II. FUNDAMENTACAO TEORICA E TRABALHOS
RELACIONADOS

A drea de sistemas de recomendagcdo tem evoluido de
abordagens puramente baseadas em similaridade para modelos
capazes de realizar raciocinio cognitivo sobre os dados. Esta
secdo detalha a evolucdo dessa linha de pesquisa, desde a
introdu¢@o de modulos 16gicos neurais até as recentes tentati-
vas de garantir consisténcia légica e integracdo de atributos.

A. A Evolugdo do Raciocinio Colaborativo

O conceito de integrar logica proposicional em arquite-
turas de redes neurais profundas foi formalizado inicial-
mente pelo Neural Logic Reasoning (NLR) [11]. O NLR
introduziu a arquitetura Logic-Integrated Neural Network
(LINN), que aprende operagdes l6gicas bésicas (E, OU, NAO)
como moddulos neurais parametrizados, permitindo resolver
equacdes logicas e realizar inferéncias em um espago vetorial
continuo [11].

Baseando-se no NLR, o modelo Neural Collaborative Rea-
soning (NCR) [12] propds uma mudanga de paradigma em
sistemas de recomendacdo: de tarefas de “correspondéncia”
(matching) para tarefas de “raciocinio” (reasoning). O NCR
formaliza a recomenda¢do como um problema de inferéncia
l6gica, onde o histérico de interagdes de um usudrio é
traduzido em cldusulas de Horn (e.g., (A A B) A =C' —
D). Neste contexto, cada usudrio contribui com uma parte
do espago logico, colaborando para estimar as preferéncias
uns dos outros através de uma arquitetura neural modular
dinamica [12].

Expandindo essa abordagem para dados estruturados em
grafos, o modelo Graph Collaborative Reasoning (GCR) [13]
— que serve como base principal para este trabalho — traduz a
estrutura topoldgica do grafo em expressdes 16gicas. Diferente
das Graph Neural Networks (GNNs) tradicionais que agregam
informagdes de nds, o GCR foca no relacionamento légico
entre arestas adjacentes. Ele assume que a validade de uma
aresta alvo (link prediction) pode ser inferida logicamente
a partir de suas arestas vizinhas, utilizando cldusulas de
Horn para modelar caminhos no grafo e realizar inferéncias
relacionais complexas [13].

B. Consisténcia Logica e Abordagens Fuzzy

Embora modelos como NCR e GCR tenham demonstrado
eficicia, eles dependem de redes neurais (MLPs) para simular
operacdes logicas. Essa abordagem “caixa-preta” apresenta
limitacdes tedricas: os mddulos aprendidos ndo garantem a
satisfacdo estrita de axiomas l6gicos fundamentais (como asso-
ciatividade e dupla negacdo) e exigem uma grande quantidade
de dados para aprender o comportamento dos operadores [14].

Para mitigar essas limitagdes, o Fuzzy Collaborative Rea-
soning (FuzzCR) [14] propde a substituicio dos moddulos
neurais parametrizados por operadores de légica fuzzy nao-
paramétricos (baseados em t-normas, como a Ldgica do Pro-
duto ou Godel). Ao redefinir a recomendagdo sequencial como
um problema de resposta a consultas logicas (First-Order
Logic query answering), o FuzzCR assegura que o processo
de raciocinio seja consistente com as regras da 1dgica cldssica
e melhora a capacidade de generalizagdo do modelo, pois os
operadores 16gicos sdo fixos e ndo requerem treinamento [14].

C. Enriquecimento com Atributos (Features)

A maioria dos modelos de raciocinio colaborativo (como
NCR e GCR) opera principalmente sobre IDs de usudrios
e itens, subutilizando a riqueza semantica dos atributos de
contedido. O modelo Feature-Enhanced Neural Collaborative
Reasoning (FENCR) [15] aborda essa lacuna ao integrar
embeddings de features (como categoria do item ou perfil do
usudrio) diretamente nas regras légicas.

Diferente de abordagens anteriores que usavam codificacio
one-hot para 16gica, o FENCR inova ao empregar um seletor
de features treindvel e moédulos 16gicos baseados em Factor-
ization Machines (FM) para capturar interacdes de segunda
ordem entre atributos [15]. Embora essa arquitetura seja pro-
jetada para extrair regras explicitas, ela demonstra que o en-



riquecimento semantico € crucial para a precisio do raciocinio.
A extensdo FA-GCR proposta neste trabalho baseia-se nessa
premissa fundamental do FENCR, mas difere na execucdo
arquitetural. Adotamos uma estratégia de codificacdo densa,
aqui denominada Feature-Aware Encoding, para integrar os
atributos a estrutura de grafo do GCR. Essa abordagem foca
na construgdo de representacdes semanticamente ricas antes
do processo de inferéncia légica, concatenando embeddings
de identidade e conteudo.

III. METODOLOGIA

Nesta secdo, detalhamos a formulacdo matemadtica e a
arquitetura dos modelos implementados. A abordagem baseia-
se na premissa de que a recomendacdo pode ser modelada ndo
apenas como uma correspondéncia de similaridade, mas como
um processo de raciocinio légico dedutivo sobre interagdes
passadas e a estrutura do grafo.

A. Fundamentacdo Loégica: LINN e NCR

A arquitetura base para este trabalho fundamenta-se
no Logic-Integrated Neural Network (LINN) [11] e sua
evolucdo para recomendacgdo, o Neural Collaborative Reason-
ing (NCR) [12].

1) Representacdo Vetorial e Vetor TRUE: No NCR,
varidveis 16gicas (usudrios, itens, eventos) sdo mapeadas para
um espaco vetorial latente R?. Um componente central desta
arquitetura é o vetor constante TRUE (T') [12].

« Inicializacao: O vetor T ¢ inicializado aleatoriamente no
inicio do treinamento.

o Imutabilidade: Diferente dos outros parametros da rede,
T permanece fixo (ndo € atualizado via backpropagation)
durante todo o processo. Ele serve como uma ancora no
espago vetorial que define a orientagdo da “verdade”.

o Avaliacao: A probabilidade de uma expressao logica ser
verdadeira é calculada pela similaridade (ex: cosseno)
entre o vetor resultante da expressdo e o vetor T.

2) Formulagdo do Neural Collaborative Reasoning (NCR):
O NCR formaliza a recomendacdo personalizada como um
problema de raciocinio l6gico utilizando Cldusulas de Horn. A
execucdo do modelo segue uma estrutura de drvore dinamica,
onde as folhas sdo os embeddings de eventos e a raiz € a
avaliagdo de verdade.

Para modelar o raciocinio com feedback implicito, con-
sideramos que sabemos apenas se um usudrio interagiu com
um item, mas ndo se ele gostou ou ndo [I12]. Seja u €
U um usudrio e seu histérico de interacdes contendo r
itens {v1,va,...,v,}. Definimos uma funcdo de codificagéo
I(u,v;) (representada pelo embedding de evento el) que
indica a intera¢do entre u € v;.

O problema de prever se o item v, deve ser recomendado
reduz-se a decidir se a seguinte Cldusula de Horn é Verdadeira
ou Falsa:

I, v1) A (u,v2) Ao A (u,v0) = T(u,0p) (1)

Intuitivamente, utilizamos a Clausula de Horn para descr-
ever se 0os comportamentos existentes do usudrio, em conjunto,
implicariam na preferéncia por um novo item v,,.

Para viabilizar o treinamento em uma rede neural, ree-
screvemos esta expressao utilizando apenas operagdes 16gicas
basicas. Baseando-se na definicio de Implicacio Material
(A — B=-AV B), a expressio torna-se [12]:

(I (u,v1) A(u,v2) A= AN(u,v)) VI(uw,v,)  (2)

Finalmente, aplicando as Leis de De Morgan (—=(A A B) =
- AV -B), a expressdo pode ser simplificada para uma forma
que utiliza apenas os operadores de Negacdo (—) e Disjuncdo

(V):

(=1 (u,v1) VI (u,v2) V- Vl(u,v:))VI(u,vg)  (3)

Em termos de embeddings de eventos (e;,), a arquitetura
neural avalia a seguinte expressdo final, reduzindo a complex-
idade computacional ao eliminar a necessidade de um mdédulo
de conjun¢do (A) explicito:

(megt Ve V-V omeln) Vens 4

B. Modelagem em Grafos: Graph Collaborative Reasoning
(GCR)

O GCR [13] expande o raciocinio do NCR para a estrutura
de grafos, tratando a recomendagdo como um problema de
predi¢do de links.

1) Formulagdo do Problema no GCR: A tarefa de predicio
de links visa inferir conexdes potenciais com base nas
informagdes conhecidas do grafo. Diferente de trabalhos an-
teriores que tratam cada tripla independentemente, o GCR
considera que triplas (arestas) possuem relacdes potenciais se
compartilharem nés [13].

Seja um grafo G = (V,R,T), onde V é o conjunto de
vértices, R o conjunto de relagdes e 7' as triplas conhecidas.
Para qualquer v;,v; € V e uma relacdo rj € R, precisamos
prever se a tripla alvo T, = (v;, g, v;) € vélida.

Primeiro, denotamos N; e N como os conjuntos de viz-
inhos de v; e v;, respectivamente, para formar o conjunto de
triplas vizinhas 7;;:

Tij = {(is Pins V) lvn € NiF U {(Uj>rjmvvm)|vm € '/\/J}
4)
A Figura 1 ilustra este cendrio, onde a existéncia da tripla
alvo (V4,r,, V2) é inferida a partir de (Vy, r1, V1), (V5,72, V1),
(Va,r3,Vs), (Va,72, Vi) e (Va, 74, V7).
Como ¢ possivel que nem todas as triplas vizinhas sejam
a razdo para a existéncia de T, aplicamos o operador OU
(V). A intuicdo é que a validade de T, pode ser implicada
por qualquer link vizinho ou qualquer combinacdo deles.

Traduzimos isso na seguinte expressdo légica massiva [13]:

(T > T,)V(Ta = T,)V---V (T, > T)
V(Ty ATy A+ ATy — Ty) 6)
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Fig. 1. Representacdo esquemadtica da predicdo de links no GCR. A validade
da aresta r; € inferida logicamente a partir da vizinhanca.

Esta expressdo cobre Cldusulas de Horn simples e de
alta ordem. Matematicamente, prova-se que esta equacdo &
verdadeira se, e somente se, 1, for verdadeiro (dado que os
vizinhos T3 ... T, s@o fatos conhecidos do grafo).

No entanto, a complexidade desta expressdo é O(2"), o que
¢ impraticavel. Utilizando regras de implicacdo e as Leis de
De Morgan, o GCR simplifica drasticamente esta expressiao
para uma forma linear O(n):

Ty Ty VN =T, VT, 7

Esta € a expressdo final utilizada para construir a rede neural
l6gica no GCR.

2) Recomendagdo como Grafo Bipartido: No contexto es-
pecifico de recomendag@o, o problema ¢ instanciado como
um grafo bipartido heterogéneo, onde os dois conjuntos de
nés disjuntos sdo Usudrios (U) e Itens (V), e as arestas
representam interacdes (compras, cliques, avaliagdes) [13].

Fig. 2. Grafo bipartido ilustrando a recomendagio do item I4 para o usudrio
Us com base na estrutura de conexoes.

A Figura 2 exemplifica esse cendrio. Prever uma
recomendacdo equivale a prever a existéncia de um link
ndo observado entre um n6 v € U e um n6 v € V,
utilizando o raciocinio légico derivado de seus vizinhos no
grafo (outros itens que o usudrio consumiu e outros usudrios
que consumiram o item).

C. Regularizacdo Logica e Treinamento

Como os modulos neurais (MLPs) que simulam as
operacdes ldogicas ndo possuem garantias matemadticas
intrinsecas, impomos restricdes explicitas e estruturais.

1) Regularizadores Logicos: Utilizamos regularizadores
baseados em axiomas da légica cldssica. Para cada axioma,
calculamos a similaridade entre o resultado da operacdo neural
e o resultado esperado (T ou F). A Tabela I detalha as
equagdes de regularizacdo utilizadas [12].

2) Regularizacdo Estrutural via Shuffling: Além dos reg-
ularizadores explicitos na fungdo de perda, aplicamos uma
técnica de regularizagdo estrutural para garantir as pro-
priedades de comutatividade (zVy = yVx) e associatividade
(xV(yvz)=(zxVy)V2).

Como os médulos neurais processam as entradas sequen-
cialmente ou em pares, a ordem dos operandos poderia en-
viesar o resultado. Para mitigar isso, realizamos o embaral-
hamento aleatério (shuffling) das varidveis 16gicas de entrada
(os vizinhos ou itens do histérico) a cada época de treina-
mento [12]. Isso forca a rede a aprender uma representagao que
seja invariante a ordem dos fatores, simulando as propriedades
fundamentais da ldgica cléssica.

D. Extensdo 1: FuzzGCR (Integragdo com Logica Fuzzy)

Embora o NCR e 0 GCR tenham demonstrado eficacia, am-
bos dependem de redes neurais (MLPs) para simular operacdes
l6gicas. Esta abordagem “caixa-preta” apresenta limitagcdes
tedricas: os modulos aprendidos exigem grandes volumes
de dados para convergir e, mesmo com regularizacdo, nao
garantem a satisfagdo estrita de axiomas l6gicos fundamentais
(como associatividade e dupla negacdo) [12], [14].

Para mitigar essas limitagdes e impor consisténcia tedrica,
propomos a extensdo FuzzGCR, inspirada no modelo Fuzzy
Collaborative Reasoning (FuzzCR) [14]. Nesta abordagem,
substituimos a simulag¢do neural por operadores 16gicos nao-
paramétricos definidos formalmente por t-normas e t-
conormas. Estas classes de fungdes atuam como relaxamentos
continuos dos operadores booleanos, onde a t-norma modela a
semintica da intersecao logica (z A y) e a t-conorma modela
a unido légica (x \V y) no dominio [0, 1]¢. Essa estratégia as-
segura que o raciocinio preserve axiomas estruturais enquanto
mantém a diferenciabilidade necessdria para o aprendizado.

Para concretizar essa mudanca, é necessdria uma alteracao
fundamental na topologia do espaco latente. Enquanto os mod-
elos baseados em redes neurais (LINN, NCR, GCR) operam
no espaco vetorial R? e utilizam um vetor 4dncora de verdade
(T) inicializado aleatoriamente, o FuzzGCR restringe estri-
tamente os embeddings ao hipercubo unitdrio [0, 1]¢. Nesta
formulagdo, cada dimensdo representa um grau de verdade ou
probabilidade, e a ancora de “Verdade” deixa de ser um vetor
latente arbitrario para se tornar fixa no vetor constante 1.

Exploramos trés sistemas légicos distintos para as operacgdes
de Conjuncdo (A), Disjun¢do (V) e Negacdo (—):
1) Logica do Produto (Product Logic): Neste sistema, a

conjuncdo ¢ modelada como o produto de probabilidades
independentes. E uma escolha robusta pois € totalmente difer-



TABLE I
LEIS LOGICAS, EQUACOES E REGULARIZADORES CORRESPONDENTES PARA 0S MODULOS NEURAIS [12].

Operador  Lei Ldgica Equacao Axiomatica  Regularizador Logico (r;)
~ 1 .

NOT Negacao -T=F ry = @ > zex (14 Sim(NOT(z), z))
Dupla Negacao —(—z) == T2 = %] > wex (1 —Sim(NOT(NOT(x)), z))
Identidade zANT =z rg = ﬁ > zex (1 —Sim(AND(z, T), x))

AND Aniquilagio tAF=F ry = ﬁ > zex (1 — Sim(AND(z, F), F))
Idempoténcia TANT =2 rs = ﬁ > wex (1 —Sim(AND(z, x), z))
Contradigiio tA-z=F re = ﬁ > sex (1 — Sim(AND(z,NOT(z)), F))
Identidade tVF =z Ty = ﬁ > sex (1 —Sim(OR(z, F), z))

OR Aniquilagio zVT=T ry = ﬁ > wex (1 — Sim(OR(z, T), T))
Idempoténcia xVr=x rg = ﬁ > zex (1 —Sim(OR(z, ), z))
Tautologia zV-x=T r10 = ﬁ > wex (1 — Sim(OR(z,NOT(z)), T))

encidvel e possui uma interpretacdo probabilistica natural [14].

G NG =q1Oqe ®)
aVe=qg+q-— (@ 0q) &)
q=1-¢q (10)

onde © denota a multiplicacdo elemento-a-elemento.

2) Logica de Godel (Godel Logic): A l6gica de Godel
opera com base nos valores extremos (“gargalo”). Diferente
da légica do produto, ela ndo € estritamente “interativa” (o
resultado depende apenas de um dos operandos), o que a torna
ideal para capturar condi¢des de contorno rigidas [14].

¢1 A g2 = min(gi, ¢2) (11)
1 V g2 = max(q1, g2) (12)
q=1-gq (13)

3) Légica Smooth (Smooth Logic): Uma limitacdo da
Légica de Godel € o problema de gradientes esparsos (o
gradiente s6 flui pelo valor mdximo ou minimo). Para resolver
isso, propomos uma variante baseada na aproximacdo suave
das funcdes Min/Max utilizando a operagdo LogSumExp.

Definimos as operagdes suaves parametrizadas por um es-
calar de rigidez k:

1
0 Ag=—pln(exp(—k-q) +exp(=k-q2)) (14
1
Vg = z In(exp(k - 1) + exp(k - q2)) (15)

O parametro k (stiffness) controla o comportamento das
operagdes bindrias. Para valores altos de k (> 20), as fungdes
aproximam-se de min e max (comportamento de Godel),
enquanto para valores baixos, aproximam-se da soma ou
média, facilitando o fluxo de gradientes.

E. Extensdo 2: FA-GCR (Enriquecimento de Atributos)

A maioria dos modelos de raciocinio colaborativo, incluindo
a implementacdo original do GCR [13], utiliza um codificador
de busca simples (Lookup Encoder). Nesta abordagem, cada
usudrio u e item v € representado por um vetor de parametros
livres e;; € RY, aprendido exclusivamente a partir da estrutura
de interacdes (ID do nd).

Embora eficaz para filtragem colaborativa pura, essa abor-
dagem falha em capturar a semantica intrinseca das entidades
e sofre em cendrios de esparsidade ou cold-start. Para mitigar
isso, propomos o Feature-Aware GCR (FA-GCR).

Esta extensdo inspira-se na premissa do Feature-Enhanced
Neural Collaborative Reasoning (FENCR) [15] de que os
atributos enriquecem as regras l6gicas. No entanto, nossa abor-
dagem difere na execucdo arquitetural: enquanto o FENCR
incorpora mecanismos complexos de selecdo de features den-
tro das regras logicas, o FA-GCR foca na constru¢do de
uma representacao densa semanticamente rica na etapa de
codificagdo, antes do processo de raciocinio.

1) Feature-Aware Encoder: Substituimos a camada de em-
bedding original por um codificador hibrido que funde iden-
tificadores tnicos com metadados categéricos, numéricos e
booleanos.

Seja C = {c1,...,¢m} 0 conjunto de features categdricas
(ex: género, ocupagdo) e N' = {ny,...,n,} o conjunto de
features numéricas/booleanas (ex: idade, preco). O vetor de
representacdo bruta h,,, para uma entidade é construido pela
concatenagdo de todos os seus componentes:

hpy = [eid;ecl 3o+ 3€c,, 5 Tng ;~-~§$np] (17)

Onde:

e [-;-] denota a operagdo de concatenagdo de vetores.



o €4: Eo embedding do ID da entidade (opcional, contro-
lado pelo hiperparametro embed_id).
. € E o embedding aprendido para o valor especifico da
j-ésima feature categorica.
e Z,,: E o valor escalar bruto da k-ésima feature numérica.
2) Projecdo e Dimensionalidade: Como a concatenacio
resulta em um vetor de alta dimensionalidade (RPrew), apli-
camos uma rede de proje¢do para mapear hg, de volta a
dimensdo latente d esperada pelos médulos 16gicos do GCR
(d = 64 em nossos experimentos). A funcdo de projecdo
€ definida por uma transformacdo linear seguida de ndo-
linearidade e regularizacgdo:

Viinal = Dropout(ReLU(W phy,y + b)) (18)

Onde W, € R¥*Praw ¢ b, € R? sdo pesos e vieses
aprendiveis. Esta arquitetura permite que o modelo GCR
“raciocine” sobre uma representacdo que codifica tanto a
identidade colaborativa quanto o contetido semantico, sem
alterar a estrutura das Cldusulas de Horn definidas na secdo
anterior.

Investigamos duas variantes desta extensdo:

1) FA-GCR (w/ ID): Inclui e;4 na concatenagdo. Combina

a especificidade do usudrio com seus atributos.

2) FA-GCR (w/o ID): Remove €;4, forcando o modelo a
raciocinar exclusivamente com base nos atributos. Esta
variante € crucial para testar a generalizacdo em cendrios
indutivos e de cold-start.

IV. EXPERIMENTOS E RESULTADOS

Nesta se¢do, detalhamos o ambiente experimental, incluindo
os conjuntos de dados, protocolos de avaliacdo e detalhes
de implementacdio. Em seguida, apresentamos e discutimos
os resultados obtidos na reproducdo do modelo GCR e na
validag@o das extensdes propostas (FuzzGCR e FA-GCR).

A. Configuracdo Experimental

1) Conjuntos de Dados: Os experimentos foram conduzi-
dos em quatro datasets puiblicos amplamente utilizados na
literatura de sistemas de recomendacdo. A Tabela II resume
as estatisticas descritivas apds o pré-processamento.

TABLE II
ESTATISTICAS DESCRITIVAS DOS DATASETS UTILIZADOS NOS
EXPERIMENTOS (APOS PRE-PROCESSAMENTO 5-CORE NA AMAZON).

Dataset # Usuarios # Itens # Interacoes Esparsidade
ML-100k 943 1.682 100.000 93,70%
ML-1M 6.040 3.706 1.000.209 95,81%
Beauty 22363  12.101 198.502 99,93%
Clothing 39.387  23.033 278.677 99,97%

a) Pré-processamento e Origem:

e MovieLens (100k e 1M) [16]: Utilizamos dados brutos
convertidos em feedback implicito (interagdes positivas =
1).

+ Amazon (Beauty e Clothing) [17]: Utilizamos a versao
5-core, que garante densidade minima para a propagacio

de informagdo no grafo (minimo de 5 interacdes por
usudrio/item).

b) Critérios para Avaliacdo do FA-GCR: A extensdo
Feature-Aware (FA-GCR) foi avaliada exclusivamente nos
datasets MovieLens. Os datasets da Amazon foram excluidos
desta etapa especifica devido a auséncia de metadados de-
mograficos dos usudrios (removidos por questdes de pri-
vacidade [17]). Como o FA-GCR fundamenta-se na fusdo
semantica bilateral (usudrio e item), sua aplicacdo nos datasets
da Amazon resultaria em uma arquitetura degenerada, equiv-

alente ao lookup de ID padrao. No MovieLens, utilizamos:
o Usuario: Idade, Género, Ocupagéo e Zip-Code.
o Item: Titulo, Ano de Lancamento e Géneros.
2) Metodologia de Avaliagdo:
a) Divisdo dos Dados: Adotamos a estratégia Leave-
One-Out:

e Treino: Todo o histérico, exceto as duas ultimas
interagdes.

« Validacdo: A peniltima interagdo (para ajuste de hiper-
pardmetros).

o Teste: A ultima interagdo (para avalia¢do final).

b) Estratégia de Ranking (Real-plus-N): Para cada
interacdo positiva no teste, amostramos aleatoriamente 99 itens
negativos. O modelo classifica uma lista de 100 itens, e o
desempenho é medido pela posi¢do do item verdadeiro nesta
lista.

¢) Métricas: O desempenho foi mensurado através de
Hit Rate (HR@K) e Normalized Discounted Cumulative Gain
(NDCG@K), com K € {5,10}. O NDCG ¢ definido como:

DCGQK
onde
K rel;
DCGQK = — 20
; logy (i +1) 20)

3) Detalhes de Implementagdo: Os modelos foram otimiza-
dos minimizando a seguinte funcdo objetivo, baseada na
Bayesian Personalized Ranking (BPR) Loss:

L= £BPR + )\@H@HQ + )\logicﬁreg (21)

Utilizamos amostragem negativa 1:1 durante o treino e
otimizador Adam (batch size = 64). Os hiperparametros
(dimensdo de embedding e learning rate) foram ajustados
individualmente. O cédigo-fonte e scripts de reproducdo estao
disponiveis publicamente'.

B. Resultados e Discussdo

A Tabela III apresenta os resultados consolidados, com-
parando o baseline (BiasedSVD), a reproducdo do GCR e as
extensdes propostas.

Thttps://github.com/jorgesilva2407/gcrdrec



TABLE III
RESULTADOS EXPERIMENTAIS CONSOLIDADOS. OS MELHORES RESULTADOS POR DATASET ESTAO EM NEGRITO. NOTE QUE A REPRODUCAO DO GCR
SUPERA CONSISTENTEMENTE OS BASELINES, E O FA-GCR (W/0 ID) ATINGE O ESTADO DA ARTE NOS DATASETS MOVIELENS.

Dataset Modelo HIT@l HIT@5 HIT@10 NDCG@5 NDCG@10

BiasedSVD 0.0769 0.2143 0.3126 0.1467 0.1784

GCR (Reproduzido) 0.2526 0.3551 0.4384 0.3039 0.3306

Amazon Beauty FuzzGCR (Product) 0.0215 0.0744 0.1320 0.0477 0.0661

FuzzGCR (Godel) 0.0565 0.1728 0.2618 0.1147 0.1433

FuzzGCR (Smooth) 0.0591 0.1703 0.2557 0.1151 0.1425

BiasedSVD 0.0550 0.1669 0.2542 0.1114 0.1394

GCR (Reproduzido) 0.3065 0.3508 0.3760 0.3295 0.3376

Amazon Clothing FuzzGCR (Product) 0.0141 0.0703 0.1365 0.0415 0.0626

FuzzGCR (Godel) 0.0531 0.1586 0.2437 0.1065 0.1339

FuzzGCR (Smooth) 0.0515 0.1586 0.2407 0.1055 0.1319

BiasedSVD 0.1008 0.3232 0.4699 0.2135 0.2607

GCR (Reproduzido) 0.4482 0.4623 0.4709 0.4552 0.4580

FuzzGCR (Product) 0.0747 0.2810 0.4195 0.1780 0.2225

MovieLens-1M FuzzGCR (Godel) 0.0927 0.3002 0.4444 0.1968 0.2430

FuzzGCR (Smooth) 0.0892 0.2993 0.4407 0.1960 0.2416

FA-GCR (w/ ID) 0.4570 0.4631 0.4690 0.4601 0.4620

FA-GCR (w/o ID) 0.4796 0.4869 0.4940 0.4833 0.4856

BiasedSVD 0.0308 0.1177 0.2195 0.0731 0.1061

GCR (Reproduzido) 0.3531 0.3807 0.3987 0.3680 0.3739

FuzzGCR (Product) 0.0848 0.2662 0.4030 0.1747 0.2187

MovieLens-100k FuzzGCR (Godel) 0.0583 0.2269 0.3510 0.1439 0.1837

FuzzGCR (Smooth) 0.0838 0.2641 0.3733 0.1744 0.2093

FA-GCR (w/ ID) 0.4825 0.5186 0.5514 0.5008 0.5113

FA-GCR (w/o ID) 0.5355 0.5567 0.5705 0.5464 0.5507
1) Andlise de Reprodutibilidade (GCR Base): A do sinal, evitando o colapso numérico. Em contrapartida, o
reimplementagio do GCR  demonstrou superioridade FuzzGCR é forcado a operar estritamente em [0,1]¢ para
consistente sobre o BiasedSVD. No dataset Amazon manter a consisténcia semantica. Neste intervalo limitado,

Beauty, o NDCG@5 do GCR (0.3039) foi mais que o dobro
do baseline (0.1467).

Ressalta-se que os resultados obtidos em nossa reproducao
foram superiores aos reportados no artigo original. Enquanto
os autores originais relataram um NDCG@5 de 0.0606 para
0 Beauty, obtivemos 0.3039. Esta magnitude estd alinhada
com o estado da arte atual (e.g., métricas reportadas para
BERT4Rec [18]), sugerindo que a nossa implementacdo &
robusta e que os resultados originais podem ter sido subes-
timados.

2) Limitacées Estruturais da Logica Fuzzy (FuzzGCR): A
substituicdo dos MLPs por operadores fuzzy fixos resultou
em degradacdo de performance em todas as variantes. A
degradacdo mais acentuada ocorreu na Product Logic, o que
aponta para uma incompatibilidade estrutural entre axiomas
16gicos estritos e o aprendizado em grafos profundos.

A causa raiz dessa divergéncia reside na natureza dos
espagos de representagio. O GCR opera em R?, permitindo
que os moédulos neurais (MLPs) aprendam pardmetros de
escala e viés que preservam ou amplificam a magnitude

a aplicacdo sucessiva de t-normas fixas (como o produto
x - y) provoca, inevitavelmente, um decaimento exponencial
dos valores de verdade em direcdo a zero. Este fendmeno
causa severa saturacio de gradientes (vanishing gradient) em
cadeias de raciocinio longas, sugerindo que o “relaxamento
neural” dos operadores 16gicos — embora teoricamente menos
rigoroso — € um pré-requisito funcional para a estabilidade
do treinamento em escalas maiores.

3) Enriquecimento Semdntico e Generalizacdo (FA-GCR):
A extensio FA-GCR apresentou os melhores resultados
globais nos datasets MovieLens, com destaque para a variante
FA-GCR (w/o ID), que atingiu um NDCG@5 de 0.5464 no
ML-100k (vs. 0.3680 do GCR).

O desempenho superior desta variante, que opera exclusi-
vamente com atributos semanticos, € um achado notavel. Ao
remover os identificadores tnicos (e;q) e forcar o modelo a
raciocinar sobre atributos (como género e idade), o sistema
deixa de memorizar interacdes especificas e passa a aprender
padroes de preferéncia generalizaveis. Isso mitiga o overfitting
e permite que o modelo realize inferéncias robustas mesmo



para itens com poucas interacdes, validando a premissa de
que a riqueza semantica compensa a falta de especificidade
topolégica.

V. CONCLUSAO

Este trabalho apresentou uma investigagdo abrangente sobre
sistemas de recomendacdo neuro-simbdlicos, revisitando e
estendendo o modelo Graph Collaborative Reasoning (GCR).
A reimplementagao realizada nao apenas validou a eficicia da
abordagem, mas redefiniu o baseline de desempenho do GCR,
superando métricas previamente estabelecidas na literatura e
confirmando a robustez do raciocinio l6gico em grafos.

As exploracdes arquiteturais forneceram duas li¢cdes fun-
damentais para o design de futuros sistemas. Primeiramente,
a andlise do FuzzGCR demonstrou que a imposi¢io estrita
de consisténcia axiomdtica via operadores fixos impde bar-
reiras severas a otimizag¢do baseada em gradiente, validando
empiricamente o uso de aproximagdes neurais flexiveis. Em
contrapartida, o sucesso do FA-GCR, particularmente na sua
vertente puramente baseada em atributos, evidenciou que o fu-
turo do raciocinio colaborativo reside na integracdo semantica.
A capacidade do modelo de superar abordagens baseadas em
ID sugere que “raciocinar” sobre as caracteristicas intrinsecas
das entidades permite uma generalizag¢do indutiva superior a
simples memoriza¢do de conexdes.

Em suma, este estudo entrega a comunidade uma
implementagdo validada e evidéncias claras de que o equilibrio
entre a estrutura légica do grafo e a representacdo rica de
atributos € o caminho mais promissor para a proxima geracao
de sistemas de recomendacdo explicéveis.

VI. TRABALHOS FUTUROS

Os resultados obtidos com o Feature-Aware GCR (FA-GCR)
abrem caminhos promissores para a evolucdo de sistemas
neuro-simbdlicos. A seguir, delineamos direcdes de pesquisa
para expandir a robustez, a expressividade ldgica e a aplica-
bilidade do modelo em cendrios complexos.

A. Avaliacdo Comparativa e Robustez em Cendrios Criticos

Embora este trabalho tenha validado o GCR contra baselines
classicos como o BiasedSVD, uma validagdo mais rigorosa é
necessdria para posicionar o modelo no estado da arte atual.

o Comparacao com Modelos de Recomendacao SOTA:
Planeja-se comparar o desempenho do FA-GCR com
arquiteturas baseadas em Deep Learning, como SAS-
Rec [19] e BERT4Rec [18], além de GNNs puras e
eficientes como a LightGCN [20]. O objetivo ¢é verificar
se a componente de raciocinio 1égico oferece ganhos
estatisticamente significativos sobre a simples propagacao
de embeddings ou mecanismos de atenc¢do sequencial.

o Link Prediction em Grafos: Dado que o GCR formula a
recomendacdo como predicdo de links, trabalhos futuros
devem avalid-lo frente a modelos de estado da arte
para essa tarefa em grafos gerais, como SEAL [21]
e GralL [22]. Isso permitird investigar a eficdcia do

raciocinio 1légico indutivo fora do contexto estrito de
recomendacio item-usudrio.

o Anadlise de Cold-Start e Esparsidade: O sucesso da
variante FA-GCR (w/o ID) sugere um alto potencial
para cendrios de cold-start indutivo. Pretende-se realizar
testes de estresse, removendo progressivamente dados de
treinamento para quantificar a resiliéncia do modelo em
cendrios de alta esparsidade e avaliar sua capacidade
de recomendar itens novos baseando-se puramente em
atributos.

B. Evolugdo Arquitetural e Expressividade Logica

A arquitetura atual do GCR utiliza operagdes l6gicas rigidas
ou simplificadas. Propomos aumentar a sofisticacdo do mecan-
ismo de raciocinio:

o Mecanismo de Atencao no Médulo OR: A operacio de
disjuncdo (V) atual trata todas as evidéncias vizinhas com
igual importincia ou através de maximizagdo simples.
Uma extensdo natural € a implementagcdo de mecanismos
de Atencdo para ponderar dinamicamente a relevancia
de cada caminho légico. O desafio técnico reside na
adaptacdo dos regularizadores logicos para validarem
mddulos que recebem uma quantidade variavel de eventos
de entrada.

o Novas Formulacoes Ldgicas: Inspirando-se no tra-
balho de Carraro [23] sobre integracdo neuro-simbolica,
pretendemos explorar axiomas mais complexos, como
transitividade ou influéncia social. Diferentemente da
abordagem de Carraro, que utiliza Logic Tensor Net-
works (LTN) em um cendrio de satisfatibilidade maxima
(soft constraints), o desafio aqui serd traduzir essas
formulagdes para o paradigma de restricdes fortes e
regularizacdo estrutural do GCR, garantindo que o mod-
elo permanega diferenciavel.

C. Enriquecimento de Grafo e Novos Dominios

Finalmente, a estrutura de grafo do GCR permite a
integracdo de fontes de conhecimento heterogéneas:

o Grafos Enriquecidos e Modelos Hibridos: O grafo
atual é estritamente bipartido. Trabalhos futuros devem
avaliar a inclusdo de arestas intra-tipo (social user-user ou
similaridade item-item). Além disso, propde-se uma abor-
dagem hibrida onde outros modelos de recomendacdo
sugerem arestas candidatas (“atalhos” no grafo), cabendo
ao GCR validar logicamente essas conexoes.

e Cross-Domain Recommendation: A capacidade de
raciocinio 16gico € ideal para transferéncia de conheci-
mento. Planeja-se avaliar o modelo em cendrios Cross-
Domain, onde regras 16gicas aprendidas em um dominio
denso podem ser transferidas para regularizar o apren-
dizado em um dominio alvo esparso.
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