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Abstract—Este trabalho investiga a aplicação de Inteligência
Artificial Neuro-Simbólica em Sistemas de Recomendação, com
foco no modelo Graph Collaborative Reasoning (GCR). Enquanto
sistemas tradicionais enfrentam desafios de interpretabilidade
e esparsidade, o GCR propõe modelar a recomendação como
um raciocı́nio lógico dedutivo sobre grafos. Este estudo ap-
resenta três contribuições principais. Primeiro, realiza-se um
estudo crı́tico de reprodutibilidade, reimplementando o modelo
integralmente; os resultados obtidos superam significativamente
as métricas reportadas na literatura original, estabelecendo
novos baselines de desempenho para o GCR. Segundo, avalia-
se o FuzzGCR, uma extensão baseada em lógica fuzzy não-
paramétrica; a análise demonstra que a rigidez axiomática
das t-normas causa saturação de gradientes em cadeias lógicas
profundas, evidenciando a necessidade de relaxamento neural em
grafos complexos. Terceiro, propõe-se o FA-GCR (Feature-Aware
GCR), que integra atributos semânticos ao raciocı́nio lógico. Os
experimentos nos datasets MovieLens demonstram que o FA-
GCR, operando exclusivamente sobre atributos (sem IDs), supera
o modelo base e baselines tradicionais, validando a hipótese
de que o enriquecimento semântico potencializa a generalização
indutiva em arquiteturas neuro-simbólicas.

Index Terms—Sistemas de Recomendação, IA Neuro-
Simbólica, Graph Collaborative Reasoning, Lógica Fuzzy, Re-
produtibilidade, Aprendizado de Representação

I. INTRODUÇÃO

Os sistemas de recomendação tornaram-se componentes
onipresentes em plataformas digitais modernas, desempen-
hando um papel crucial na filtragem e priorização de grandes
volumes de informações para usuários com capacidade de pro-
cessamento limitada [1], [2]. O objetivo primordial desses sis-
temas é balancear os interesses das plataformas e dos usuários,
promovendo a exposição seletiva de itens com alta proba-
bilidade de aceitação, baseada em preferências individuais e
comportamentos passados [3], [4]. Apesar dos avanços sig-
nificativos impulsionados pelo Aprendizado Profundo (Deep
Learning), esses sistemas ainda enfrentam desafios estruturais
notáveis, como a esparsidade de dados, o problema do inı́cio
frio (cold-start) [5], [6] e a baixa interpretabilidade dos mod-
elos, que frequentemente operam como “caixas-pretas” [7].

Nesse contexto, a Inteligência Artificial Neuro-Simbólica
emerge como um paradigma promissor, buscando integrar a

capacidade de aprendizado representacional e generalização
das redes neurais [8] (análoga ao “pensamento rápido” [9])
com o raciocı́nio lógico e estruturado da IA simbólica (análoga
ao “pensamento lento”). Essa abordagem visa desenvolver
sistemas mais robustos, capazes de aprender a partir de dados
e, simultaneamente, realizar inferências lógicas explicáveis
sobre as recomendações geradas [10].

O desenvolvimento da área fundamenta-se na proposição de
arquiteturas pioneiras, notadamente o Logic-Integrated Neu-
ral Network (LINN) [11], que introduziu a capacidade de
aprender operadores lógicos modulares, e o Neural Collab-
orative Reasoning (NCR) [12], que aplicou esses conceitos
à recomendação personalizada. A partir dessa base teórica, o
modelo Graph Collaborative Reasoning (GCR) [13] emerge
como um avanço significativo, estendendo a lógica do NCR
para a tarefa geral de preenchimento de arestas (link predic-
tion) em grafos. O GCR destaca-se por traduzir a estrutura
topológica do grafo em expressões lógicas (Cláusulas de
Horn), permitindo realizar inferências relacionais complexas
onde a validade de uma conexão alvo é deduzida logicamente
a partir das conexões vizinhas, utilizando módulos neurais para
aprender a estrutura lógica subjacente.

No entanto, a literatura aponta limitações nas abordagens
atuais de raciocı́nio colaborativo neural. Primeiramente, mod-
elos fundamentais como o NCR — e, por consequência,
seus derivados como o GCR — dependem de redes neurais
parametrizadas para simular operações lógicas, o que pode não
garantir a satisfação estrita de axiomas lógicos fundamentais.
Essa limitação é abordada pelo Fuzzy Collaborative Reasoning
(FuzzCR) [14], que foi desenvolvido como uma extensão do
próprio NCR (ao invés do GCR) com o objetivo de impor
maior consistência teórica e generalização. O FuzzCR substitui
os módulos neurais aprendidos do NCR por operadores de
lógica fuzzy não-paramétricos, garantindo o cumprimento de
regras lógicas clássicas. Em segundo lugar, embora eficazes
em capturar a estrutura do grafo, modelos como o GCR
subutilizam a riqueza semântica dos atributos de usuários e
itens, uma lacuna que o modelo Feature-Enhanced Neural
Collaborative Reasoning (FENCR) [15] busca preencher ao



integrar embeddings de features na lógica de decisão.
Adicionalmente, existe um desafio prático de reprodutibil-

idade na área, visto que o código original do GCR não se
encontra publicamente disponı́vel, dificultando a validação de
seus resultados e a construção de novas pesquisas sobre essa
base.

Diante desse cenário, este trabalho aprofunda a investigação
sobre o Raciocı́nio Colaborativo em Grafos, oferecendo as
seguintes contribuições:

1) Reavaliação de Reprodutibilidade: Uma investigação
sobre a reprodutibilidade do GCR [13]. Na ausência do
código original para validação cruzada, reconstruı́mos o
modelo seguindo os protocolos descritos na publicação
base. Os resultados indicam que, sob as configurações
reportadas, uma implementação otimizada é capaz de
superar as métricas de referência, sugerindo que o de-
sempenho do modelo foi subestimado.

2) Análise de Limitações da Lógica Fuzzy (FuzzGCR):
Uma investigação empı́rica sobre a substituição de
módulos neurais por operadores fuzzy (Produto, Gödel,
Smooth). Os resultados evidenciam um trade-off crı́tico
entre consistência teórica e treinabilidade em arquite-
turas profundas.

3) Extensão Semântica (FA-GCR): O desenvolvimento
de uma arquitetura que incorpora embeddings de
atributos diretamente no processo de raciocı́nio. A
variante proposta, capaz de operar sem identifi-
cadores de usuários/itens, demonstra superioridade em
generalização e robustez contra a esparsidade.

Para validar tais proposições, conduzimos uma avaliação
experimental rigorosa em múltiplos domı́nios (e-commerce e
entretenimento). Os resultados discutidos a seguir transcendem
a simples comparação de métricas, fornecendo evidências
empı́ricas crı́ticas sobre os limites da lógica estrita e o po-
tencial da semântica na unificação entre raciocı́nio dedutivo e
aprendizado de representação.

II. FUNDAMENTAÇÃO TEÓRICA E TRABALHOS
RELACIONADOS

A área de sistemas de recomendação tem evoluı́do de
abordagens puramente baseadas em similaridade para modelos
capazes de realizar raciocı́nio cognitivo sobre os dados. Esta
seção detalha a evolução dessa linha de pesquisa, desde a
introdução de módulos lógicos neurais até as recentes tentati-
vas de garantir consistência lógica e integração de atributos.

A. A Evolução do Raciocı́nio Colaborativo

O conceito de integrar lógica proposicional em arquite-
turas de redes neurais profundas foi formalizado inicial-
mente pelo Neural Logic Reasoning (NLR) [11]. O NLR
introduziu a arquitetura Logic-Integrated Neural Network
(LINN), que aprende operações lógicas básicas (E, OU, NÃO)
como módulos neurais parametrizados, permitindo resolver
equações lógicas e realizar inferências em um espaço vetorial
contı́nuo [11].

Baseando-se no NLR, o modelo Neural Collaborative Rea-
soning (NCR) [12] propôs uma mudança de paradigma em
sistemas de recomendação: de tarefas de ”correspondência”
(matching) para tarefas de ”raciocı́nio” (reasoning). O NCR
formaliza a recomendação como um problema de inferência
lógica, onde o histórico de interações de um usuário é
traduzido em cláusulas de Horn (e.g., (A ∧ B) ∧ ¬C →
D). Neste contexto, cada usuário contribui com uma parte
do espaço lógico, colaborando para estimar as preferências
uns dos outros através de uma arquitetura neural modular
dinâmica [12].

Expandindo essa abordagem para dados estruturados em
grafos, o modelo Graph Collaborative Reasoning (GCR) [13]
— que serve como base principal para este trabalho — traduz a
estrutura topológica do grafo em expressões lógicas. Diferente
das Graph Neural Networks (GNNs) tradicionais que agregam
informações de nós, o GCR foca no relacionamento lógico
entre arestas adjacentes. Ele assume que a validade de uma
aresta alvo (link prediction) pode ser inferida logicamente
a partir de suas arestas vizinhas, utilizando cláusulas de
Horn para modelar caminhos no grafo e realizar inferências
relacionais complexas [13].

B. Consistência Lógica e Abordagens Fuzzy

Embora modelos como NCR e GCR tenham demonstrado
eficácia, eles dependem de redes neurais (MLPs) para simular
operações lógicas. Essa abordagem ”caixa-preta” apresenta
limitações teóricas: os módulos aprendidos não garantem a
satisfação estrita de axiomas lógicos fundamentais (como asso-
ciatividade e dupla negação) e exigem uma grande quantidade
de dados para aprender o comportamento dos operadores [14].

Para mitigar essas limitações, o Fuzzy Collaborative Rea-
soning (FuzzCR) [14] propõe a substituição dos módulos
neurais parametrizados por operadores de lógica fuzzy não-
paramétricos (baseados em t-normas, como a Lógica do Pro-
duto ou Gödel). Ao redefinir a recomendação sequencial como
um problema de resposta a consultas lógicas (First-Order
Logic query answering), o FuzzCR assegura que o processo
de raciocı́nio seja consistente com as regras da lógica clássica
e melhora a capacidade de generalização do modelo, pois os
operadores lógicos são fixos e não requerem treinamento [14].

C. Enriquecimento com Atributos (Features)

A maioria dos modelos de raciocı́nio colaborativo (como
NCR e GCR) opera principalmente sobre IDs de usuários
e itens, subutilizando a riqueza semântica dos atributos de
conteúdo. O modelo Feature-Enhanced Neural Collaborative
Reasoning (FENCR) [15] aborda essa lacuna ao integrar
embeddings de features (como categoria do item ou perfil do
usuário) diretamente nas regras lógicas.

Diferente de abordagens anteriores que usavam codificação
one-hot para lógica, o FENCR inova ao empregar um seletor
de features treinável e módulos lógicos baseados em Factor-
ization Machines (FM) para capturar interações de segunda
ordem entre atributos [15]. Embora essa arquitetura seja pro-
jetada para extrair regras explı́citas, ela demonstra que o en-



riquecimento semântico é crucial para a precisão do raciocı́nio.
A extensão FA-GCR proposta neste trabalho baseia-se nessa
premissa fundamental do FENCR, mas difere na execução
arquitetural. Adotamos uma estratégia de codificação densa,
aqui denominada Feature-Aware Encoding, para integrar os
atributos à estrutura de grafo do GCR. Essa abordagem foca
na construção de representações semanticamente ricas antes
do processo de inferência lógica, concatenando embeddings
de identidade e conteúdo.

III. METODOLOGIA

Nesta seção, detalhamos a formulação matemática e a
arquitetura dos modelos implementados. A abordagem baseia-
se na premissa de que a recomendação pode ser modelada não
apenas como uma correspondência de similaridade, mas como
um processo de raciocı́nio lógico dedutivo sobre interações
passadas e a estrutura do grafo.

A. Fundamentação Lógica: LINN e NCR

A arquitetura base para este trabalho fundamenta-se
no Logic-Integrated Neural Network (LINN) [11] e sua
evolução para recomendação, o Neural Collaborative Reason-
ing (NCR) [12].

1) Representação Vetorial e Vetor TRUE: No NCR,
variáveis lógicas (usuários, itens, eventos) são mapeadas para
um espaço vetorial latente Rd. Um componente central desta
arquitetura é o vetor constante TRUE (T) [12].

• Inicialização: O vetor T é inicializado aleatoriamente no
inı́cio do treinamento.

• Imutabilidade: Diferente dos outros parâmetros da rede,
T permanece fixo (não é atualizado via backpropagation)
durante todo o processo. Ele serve como uma âncora no
espaço vetorial que define a orientação da ”verdade”.

• Avaliação: A probabilidade de uma expressão lógica ser
verdadeira é calculada pela similaridade (ex: cosseno)
entre o vetor resultante da expressão e o vetor T.

2) Formulação do Neural Collaborative Reasoning (NCR):
O NCR formaliza a recomendação personalizada como um
problema de raciocı́nio lógico utilizando Cláusulas de Horn. A
execução do modelo segue uma estrutura de árvore dinâmica,
onde as folhas são os embeddings de eventos e a raiz é a
avaliação de verdade.

Para modelar o raciocı́nio com feedback implı́cito, con-
sideramos que sabemos apenas se um usuário interagiu com
um item, mas não se ele gostou ou não [12]. Seja u ∈
U um usuário e seu histórico de interações contendo r
itens {v1, v2, . . . , vr}. Definimos uma função de codificação
I(u, vi) (representada pelo embedding de evento eviu ) que
indica a interação entre u e vi.

O problema de prever se o item vx deve ser recomendado
reduz-se a decidir se a seguinte Cláusula de Horn é Verdadeira
ou Falsa:

I(u, v1) ∧ I(u, v2) ∧ · · · ∧ I(u, vr) → I(u, vx) (1)

Intuitivamente, utilizamos a Cláusula de Horn para descr-
ever se os comportamentos existentes do usuário, em conjunto,
implicariam na preferência por um novo item vx.

Para viabilizar o treinamento em uma rede neural, ree-
screvemos esta expressão utilizando apenas operações lógicas
básicas. Baseando-se na definição de Implicação Material
(A → B ≡ ¬A ∨B), a expressão torna-se [12]:

¬(I(u, v1) ∧ I(u, v2) ∧ · · · ∧ I(u, vr)) ∨ I(u, vx) (2)

Finalmente, aplicando as Leis de De Morgan (¬(A∧B) ≡
¬A∨¬B), a expressão pode ser simplificada para uma forma
que utiliza apenas os operadores de Negação (¬) e Disjunção
(∨):

(¬I(u, v1) ∨ ¬I(u, v2) ∨ · · · ∨ ¬I(u, vr)) ∨ I(u, vx) (3)

Em termos de embeddings de eventos (evu), a arquitetura
neural avalia a seguinte expressão final, reduzindo a complex-
idade computacional ao eliminar a necessidade de um módulo
de conjunção (∧) explı́cito:

(¬ev1u ∨ ¬ev2u ∨ · · · ∨ ¬evr
u ) ∨ evxu (4)

B. Modelagem em Grafos: Graph Collaborative Reasoning
(GCR)

O GCR [13] expande o raciocı́nio do NCR para a estrutura
de grafos, tratando a recomendação como um problema de
predição de links.

1) Formulação do Problema no GCR: A tarefa de predição
de links visa inferir conexões potenciais com base nas
informações conhecidas do grafo. Diferente de trabalhos an-
teriores que tratam cada tripla independentemente, o GCR
considera que triplas (arestas) possuem relações potenciais se
compartilharem nós [13].

Seja um grafo G = (V,R, T ), onde V é o conjunto de
vértices, R o conjunto de relações e T as triplas conhecidas.
Para qualquer vi, vj ∈ V e uma relação rk ∈ R, precisamos
prever se a tripla alvo Tx = (vi, rk, vj) é válida.

Primeiro, denotamos Ni e Nj como os conjuntos de viz-
inhos de vi e vj , respectivamente, para formar o conjunto de
triplas vizinhas Tij :

Tij = {(vi, rin, vn)|vn ∈ Ni} ∪ {(vj , rjm, vm)|vm ∈ Nj}
(5)

A Figura 1 ilustra este cenário, onde a existência da tripla
alvo (V1, rx, V2) é inferida a partir de (V4, r1, V1), (V3, r2, V1),
(V2, r3, V5), (V2, r2, V6) e (V2, r4, V7).

Como é possı́vel que nem todas as triplas vizinhas sejam
a razão para a existência de Tx, aplicamos o operador OU
(∨). A intuição é que a validade de Tx pode ser implicada
por qualquer link vizinho ou qualquer combinação deles.
Traduzimos isso na seguinte expressão lógica massiva [13]:

(T1 → Tx) ∨ (T2 → Tx) ∨ · · · ∨ (Tn → Tx)

∨ (T1 ∧ T2 → Tx) ∨ . . .

∨ (T1 ∧ T2 ∧ · · · ∧ Tn → Tx) (6)
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Fig. 1. Representação esquemática da predição de links no GCR. A validade
da aresta rx é inferida logicamente a partir da vizinhança.

Esta expressão cobre Cláusulas de Horn simples e de
alta ordem. Matematicamente, prova-se que esta equação é
verdadeira se, e somente se, Tx for verdadeiro (dado que os
vizinhos T1 . . . Tn são fatos conhecidos do grafo).

No entanto, a complexidade desta expressão é O(2n), o que
é impraticável. Utilizando regras de implicação e as Leis de
De Morgan, o GCR simplifica drasticamente esta expressão
para uma forma linear O(n):

¬T1 ∨ ¬T2 ∨ · · · ∨ ¬Tn ∨ Tx (7)

Esta é a expressão final utilizada para construir a rede neural
lógica no GCR.

2) Recomendação como Grafo Bipartido: No contexto es-
pecı́fico de recomendação, o problema é instanciado como
um grafo bipartido heterogêneo, onde os dois conjuntos de
nós disjuntos são Usuários (U ) e Itens (V ), e as arestas
representam interações (compras, cliques, avaliações) [13].

U1

U2

U3

I1

I2

I3

I4

Rec?

Fig. 2. Grafo bipartido ilustrando a recomendação do item I4 para o usuário
U2 com base na estrutura de conexões.

A Figura 2 exemplifica esse cenário. Prever uma
recomendação equivale a prever a existência de um link
não observado entre um nó u ∈ U e um nó v ∈ V ,
utilizando o raciocı́nio lógico derivado de seus vizinhos no
grafo (outros itens que o usuário consumiu e outros usuários
que consumiram o item).

C. Regularização Lógica e Treinamento

Como os módulos neurais (MLPs) que simulam as
operações lógicas não possuem garantias matemáticas
intrı́nsecas, impomos restrições explı́citas e estruturais.

1) Regularizadores Lógicos: Utilizamos regularizadores
baseados em axiomas da lógica clássica. Para cada axioma,
calculamos a similaridade entre o resultado da operação neural
e o resultado esperado (T ou F). A Tabela I detalha as
equações de regularização utilizadas [12].

2) Regularização Estrutural via Shuffling: Além dos reg-
ularizadores explı́citos na função de perda, aplicamos uma
técnica de regularização estrutural para garantir as pro-
priedades de comutatividade (x∨y = y∨x) e associatividade
(x ∨ (y ∨ z) = (x ∨ y) ∨ z).

Como os módulos neurais processam as entradas sequen-
cialmente ou em pares, a ordem dos operandos poderia en-
viesar o resultado. Para mitigar isso, realizamos o embaral-
hamento aleatório (shuffling) das variáveis lógicas de entrada
(os vizinhos ou itens do histórico) a cada época de treina-
mento [12]. Isso força a rede a aprender uma representação que
seja invariante à ordem dos fatores, simulando as propriedades
fundamentais da lógica clássica.

D. Extensão 1: FuzzGCR (Integração com Lógica Fuzzy)

Embora o NCR e o GCR tenham demonstrado eficácia, am-
bos dependem de redes neurais (MLPs) para simular operações
lógicas. Esta abordagem ”caixa-preta” apresenta limitações
teóricas: os módulos aprendidos exigem grandes volumes
de dados para convergir e, mesmo com regularização, não
garantem a satisfação estrita de axiomas lógicos fundamentais
(como associatividade e dupla negação) [12], [14].

Para mitigar essas limitações e impor consistência teórica,
propomos a extensão FuzzGCR, inspirada no modelo Fuzzy
Collaborative Reasoning (FuzzCR) [14]. Nesta abordagem,
substituı́mos a simulação neural por operadores lógicos não-
paramétricos definidos formalmente por t-normas e t-
conormas. Estas classes de funções atuam como relaxamentos
contı́nuos dos operadores booleanos, onde a t-norma modela a
semântica da interseção lógica (x∧ y) e a t-conorma modela
a união lógica (x ∨ y) no domı́nio [0, 1]d. Essa estratégia as-
segura que o raciocı́nio preserve axiomas estruturais enquanto
mantém a diferenciabilidade necessária para o aprendizado.

Para concretizar essa mudança, é necessária uma alteração
fundamental na topologia do espaço latente. Enquanto os mod-
elos baseados em redes neurais (LINN, NCR, GCR) operam
no espaço vetorial Rd e utilizam um vetor âncora de verdade
(T) inicializado aleatoriamente, o FuzzGCR restringe estri-
tamente os embeddings ao hipercubo unitário [0, 1]d. Nesta
formulação, cada dimensão representa um grau de verdade ou
probabilidade, e a âncora de “Verdade” deixa de ser um vetor
latente arbitrário para se tornar fixa no vetor constante 1.

Exploramos três sistemas lógicos distintos para as operações
de Conjunção (∧), Disjunção (∨) e Negação (¬):

1) Lógica do Produto (Product Logic): Neste sistema, a
conjunção é modelada como o produto de probabilidades
independentes. É uma escolha robusta pois é totalmente difer-



TABLE I
LEIS LÓGICAS, EQUAÇÕES E REGULARIZADORES CORRESPONDENTES PARA OS MÓDULOS NEURAIS [12].

Operador Lei Lógica Equação Axiomática Regularizador Lógico (ri)

NOT
Negação ¬T = F r1 = 1

|X|
∑

x∈X(1 + Sim(NOT(x), x))

Dupla Negação ¬(¬x) = x r2 = 1
|X|

∑
x∈X(1− Sim(NOT(NOT(x)), x))

AND

Identidade x ∧T = x r3 = 1
|X|

∑
x∈X(1− Sim(AND(x,T), x))

Aniquilação x ∧ F = F r4 = 1
|X|

∑
x∈X(1− Sim(AND(x,F),F))

Idempotência x ∧ x = x r5 = 1
|X|

∑
x∈X(1− Sim(AND(x, x), x))

Contradição x ∧ ¬x = F r6 = 1
|X|

∑
x∈X(1− Sim(AND(x,NOT(x)),F))

OR

Identidade x ∨ F = x r7 = 1
|X|

∑
x∈X(1− Sim(OR(x,F), x))

Aniquilação x ∨T = T r8 = 1
|X|

∑
x∈X(1− Sim(OR(x,T),T))

Idempotência x ∨ x = x r9 = 1
|X|

∑
x∈X(1− Sim(OR(x, x), x))

Tautologia x ∨ ¬x = T r10 = 1
|X|

∑
x∈X(1− Sim(OR(x,NOT(x)),T))

enciável e possui uma interpretação probabilı́stica natural [14].

q1 ∧ q2 = q1 ⊙ q2 (8)
q1 ∨ q2 = q1 + q2 − (q1 ⊙ q2) (9)

¬q = 1− q (10)

onde ⊙ denota a multiplicação elemento-a-elemento.
2) Lógica de Gödel (Gödel Logic): A lógica de Gödel

opera com base nos valores extremos (“gargalo”). Diferente
da lógica do produto, ela não é estritamente ”interativa” (o
resultado depende apenas de um dos operandos), o que a torna
ideal para capturar condições de contorno rı́gidas [14].

q1 ∧ q2 = min(q1, q2) (11)
q1 ∨ q2 = max(q1, q2) (12)

¬q = 1− q (13)

3) Lógica Smooth (Smooth Logic): Uma limitação da
Lógica de Gödel é o problema de gradientes esparsos (o
gradiente só flui pelo valor máximo ou mı́nimo). Para resolver
isso, propomos uma variante baseada na aproximação suave
das funções Min/Max utilizando a operação LogSumExp.

Definimos as operações suaves parametrizadas por um es-
calar de rigidez k:

q1 ∧ q2 = −1

k
ln(exp(−k · q1) + exp(−k · q2)) (14)

q1 ∨ q2 =
1

k
ln(exp(k · q1) + exp(k · q2)) (15)

¬q = 1− q (16)

O parâmetro k (stiffness) controla o comportamento das
operações binárias. Para valores altos de k (> 20), as funções
aproximam-se de min e max (comportamento de Gödel),
enquanto para valores baixos, aproximam-se da soma ou
média, facilitando o fluxo de gradientes.

E. Extensão 2: FA-GCR (Enriquecimento de Atributos)

A maioria dos modelos de raciocı́nio colaborativo, incluindo
a implementação original do GCR [13], utiliza um codificador
de busca simples (Lookup Encoder). Nesta abordagem, cada
usuário u e item v é representado por um vetor de parâmetros
livres eid ∈ Rd, aprendido exclusivamente a partir da estrutura
de interações (ID do nó).

Embora eficaz para filtragem colaborativa pura, essa abor-
dagem falha em capturar a semântica intrı́nseca das entidades
e sofre em cenários de esparsidade ou cold-start. Para mitigar
isso, propomos o Feature-Aware GCR (FA-GCR).

Esta extensão inspira-se na premissa do Feature-Enhanced
Neural Collaborative Reasoning (FENCR) [15] de que os
atributos enriquecem as regras lógicas. No entanto, nossa abor-
dagem difere na execução arquitetural: enquanto o FENCR
incorpora mecanismos complexos de seleção de features den-
tro das regras lógicas, o FA-GCR foca na construção de
uma representação densa semanticamente rica na etapa de
codificação, antes do processo de raciocı́nio.

1) Feature-Aware Encoder: Substituı́mos a camada de em-
bedding original por um codificador hı́brido que funde iden-
tificadores únicos com metadados categóricos, numéricos e
booleanos.

Seja C = {c1, . . . , cm} o conjunto de features categóricas
(ex: gênero, ocupação) e N = {n1, . . . , np} o conjunto de
features numéricas/booleanas (ex: idade, preço). O vetor de
representação bruta hraw para uma entidade é construı́do pela
concatenação de todos os seus componentes:

hraw = [eid ; ec1 ; . . . ; ecm ;xn1 ; . . . ;xnp ] (17)

Onde:

• [· ; ·] denota a operação de concatenação de vetores.



• eid: É o embedding do ID da entidade (opcional, contro-
lado pelo hiperparâmetro embed_id).

• ecj : É o embedding aprendido para o valor especı́fico da
j-ésima feature categórica.

• xnk
: É o valor escalar bruto da k-ésima feature numérica.

2) Projeção e Dimensionalidade: Como a concatenação
resulta em um vetor de alta dimensionalidade (RDraw ), apli-
camos uma rede de projeção para mapear hraw de volta à
dimensão latente d esperada pelos módulos lógicos do GCR
(d = 64 em nossos experimentos). A função de projeção
é definida por uma transformação linear seguida de não-
linearidade e regularização:

vfinal = Dropout(ReLU(Wphraw + bp)) (18)

Onde Wp ∈ Rd×Draw e bp ∈ Rd são pesos e vieses
aprendı́veis. Esta arquitetura permite que o modelo GCR
”raciocine” sobre uma representação que codifica tanto a
identidade colaborativa quanto o conteúdo semântico, sem
alterar a estrutura das Cláusulas de Horn definidas na seção
anterior.

Investigamos duas variantes desta extensão:
1) FA-GCR (w/ ID): Inclui eid na concatenação. Combina

a especificidade do usuário com seus atributos.
2) FA-GCR (w/o ID): Remove eid, forçando o modelo a

raciocinar exclusivamente com base nos atributos. Esta
variante é crucial para testar a generalização em cenários
indutivos e de cold-start.

IV. EXPERIMENTOS E RESULTADOS

Nesta seção, detalhamos o ambiente experimental, incluindo
os conjuntos de dados, protocolos de avaliação e detalhes
de implementação. Em seguida, apresentamos e discutimos
os resultados obtidos na reprodução do modelo GCR e na
validação das extensões propostas (FuzzGCR e FA-GCR).

A. Configuração Experimental

1) Conjuntos de Dados: Os experimentos foram conduzi-
dos em quatro datasets públicos amplamente utilizados na
literatura de sistemas de recomendação. A Tabela II resume
as estatı́sticas descritivas após o pré-processamento.

TABLE II
ESTATÍSTICAS DESCRITIVAS DOS DATASETS UTILIZADOS NOS

EXPERIMENTOS (APÓS PRÉ-PROCESSAMENTO 5-CORE NA AMAZON).

Dataset # Usuários # Itens # Interações Esparsidade

ML-100k 943 1.682 100.000 93,70%
ML-1M 6.040 3.706 1.000.209 95,81%
Beauty 22.363 12.101 198.502 99,93%
Clothing 39.387 23.033 278.677 99,97%

a) Pré-processamento e Origem:
• MovieLens (100k e 1M) [16]: Utilizamos dados brutos

convertidos em feedback implı́cito (interações positivas =
1).

• Amazon (Beauty e Clothing) [17]: Utilizamos a versão
5-core, que garante densidade mı́nima para a propagação

de informação no grafo (mı́nimo de 5 interações por
usuário/item).

b) Critérios para Avaliação do FA-GCR: A extensão
Feature-Aware (FA-GCR) foi avaliada exclusivamente nos
datasets MovieLens. Os datasets da Amazon foram excluı́dos
desta etapa especı́fica devido à ausência de metadados de-
mográficos dos usuários (removidos por questões de pri-
vacidade [17]). Como o FA-GCR fundamenta-se na fusão
semântica bilateral (usuário e item), sua aplicação nos datasets
da Amazon resultaria em uma arquitetura degenerada, equiv-
alente ao lookup de ID padrão. No MovieLens, utilizamos:

• Usuário: Idade, Gênero, Ocupação e Zip-Code.
• Item: Tı́tulo, Ano de Lançamento e Gêneros.

2) Metodologia de Avaliação:
a) Divisão dos Dados: Adotamos a estratégia Leave-

One-Out:

• Treino: Todo o histórico, exceto as duas últimas
interações.

• Validação: A penúltima interação (para ajuste de hiper-
parâmetros).

• Teste: A última interação (para avaliação final).

b) Estratégia de Ranking (Real-plus-N): Para cada
interação positiva no teste, amostramos aleatoriamente 99 itens
negativos. O modelo classifica uma lista de 100 itens, e o
desempenho é medido pela posição do item verdadeiro nesta
lista.

c) Métricas: O desempenho foi mensurado através de
Hit Rate (HR@K) e Normalized Discounted Cumulative Gain
(NDCG@K), com K ∈ {5, 10}. O NDCG é definido como:

NDCG@K =
DCG@K

IDCG@K
(19)

onde

DCG@K =

K∑
i=1

reli
log2(i+ 1)

(20)

3) Detalhes de Implementação: Os modelos foram otimiza-
dos minimizando a seguinte função objetivo, baseada na
Bayesian Personalized Ranking (BPR) Loss:

L = LBPR + λΘ||Θ||2 + λlogicLreg (21)

Utilizamos amostragem negativa 1:1 durante o treino e
otimizador Adam (batch size = 64). Os hiperparâmetros
(dimensão de embedding e learning rate) foram ajustados
individualmente. O código-fonte e scripts de reprodução estão
disponı́veis publicamente1.

B. Resultados e Discussão

A Tabela III apresenta os resultados consolidados, com-
parando o baseline (BiasedSVD), a reprodução do GCR e as
extensões propostas.

1https://github.com/jorgesilva2407/gcr4rec



TABLE III
RESULTADOS EXPERIMENTAIS CONSOLIDADOS. OS MELHORES RESULTADOS POR DATASET ESTÃO EM NEGRITO. NOTE QUE A REPRODUÇÃO DO GCR

SUPERA CONSISTENTEMENTE OS BASELINES, E O FA-GCR (W/O ID) ATINGE O ESTADO DA ARTE NOS DATASETS MOVIELENS.

Dataset Modelo HIT@1 HIT@5 HIT@10 NDCG@5 NDCG@10

Amazon Beauty

BiasedSVD 0.0769 0.2143 0.3126 0.1467 0.1784
GCR (Reproduzido) 0.2526 0.3551 0.4384 0.3039 0.3306
FuzzGCR (Product) 0.0215 0.0744 0.1320 0.0477 0.0661
FuzzGCR (Gödel) 0.0565 0.1728 0.2618 0.1147 0.1433
FuzzGCR (Smooth) 0.0591 0.1703 0.2557 0.1151 0.1425

Amazon Clothing

BiasedSVD 0.0550 0.1669 0.2542 0.1114 0.1394
GCR (Reproduzido) 0.3065 0.3508 0.3760 0.3295 0.3376
FuzzGCR (Product) 0.0141 0.0703 0.1365 0.0415 0.0626
FuzzGCR (Gödel) 0.0531 0.1586 0.2437 0.1065 0.1339
FuzzGCR (Smooth) 0.0515 0.1586 0.2407 0.1055 0.1319

MovieLens-1M

BiasedSVD 0.1008 0.3232 0.4699 0.2135 0.2607
GCR (Reproduzido) 0.4482 0.4623 0.4709 0.4552 0.4580
FuzzGCR (Product) 0.0747 0.2810 0.4195 0.1780 0.2225
FuzzGCR (Gödel) 0.0927 0.3002 0.4444 0.1968 0.2430
FuzzGCR (Smooth) 0.0892 0.2993 0.4407 0.1960 0.2416
FA-GCR (w/ ID) 0.4570 0.4631 0.4690 0.4601 0.4620
FA-GCR (w/o ID) 0.4796 0.4869 0.4940 0.4833 0.4856

MovieLens-100k

BiasedSVD 0.0308 0.1177 0.2195 0.0731 0.1061
GCR (Reproduzido) 0.3531 0.3807 0.3987 0.3680 0.3739
FuzzGCR (Product) 0.0848 0.2662 0.4030 0.1747 0.2187
FuzzGCR (Gödel) 0.0583 0.2269 0.3510 0.1439 0.1837
FuzzGCR (Smooth) 0.0838 0.2641 0.3733 0.1744 0.2093
FA-GCR (w/ ID) 0.4825 0.5186 0.5514 0.5008 0.5113
FA-GCR (w/o ID) 0.5355 0.5567 0.5705 0.5464 0.5507

1) Análise de Reprodutibilidade (GCR Base): A
reimplementação do GCR demonstrou superioridade
consistente sobre o BiasedSVD. No dataset Amazon
Beauty, o NDCG@5 do GCR (0.3039) foi mais que o dobro
do baseline (0.1467).

Ressalta-se que os resultados obtidos em nossa reprodução
foram superiores aos reportados no artigo original. Enquanto
os autores originais relataram um NDCG@5 de 0.0606 para
o Beauty, obtivemos 0.3039. Esta magnitude está alinhada
com o estado da arte atual (e.g., métricas reportadas para
BERT4Rec [18]), sugerindo que a nossa implementação é
robusta e que os resultados originais podem ter sido subes-
timados.

2) Limitações Estruturais da Lógica Fuzzy (FuzzGCR): A
substituição dos MLPs por operadores fuzzy fixos resultou
em degradação de performance em todas as variantes. A
degradação mais acentuada ocorreu na Product Logic, o que
aponta para uma incompatibilidade estrutural entre axiomas
lógicos estritos e o aprendizado em grafos profundos.

A causa raiz dessa divergência reside na natureza dos
espaços de representação. O GCR opera em Rd, permitindo
que os módulos neurais (MLPs) aprendam parâmetros de
escala e viés que preservam ou amplificam a magnitude

do sinal, evitando o colapso numérico. Em contrapartida, o
FuzzGCR é forçado a operar estritamente em [0, 1]d para
manter a consistência semântica. Neste intervalo limitado,
a aplicação sucessiva de t-normas fixas (como o produto
x · y) provoca, inevitavelmente, um decaimento exponencial
dos valores de verdade em direção a zero. Este fenômeno
causa severa saturação de gradientes (vanishing gradient) em
cadeias de raciocı́nio longas, sugerindo que o ”relaxamento
neural” dos operadores lógicos — embora teoricamente menos
rigoroso — é um pré-requisito funcional para a estabilidade
do treinamento em escalas maiores.

3) Enriquecimento Semântico e Generalização (FA-GCR):
A extensão FA-GCR apresentou os melhores resultados
globais nos datasets MovieLens, com destaque para a variante
FA-GCR (w/o ID), que atingiu um NDCG@5 de 0.5464 no
ML-100k (vs. 0.3680 do GCR).

O desempenho superior desta variante, que opera exclusi-
vamente com atributos semânticos, é um achado notável. Ao
remover os identificadores únicos (eid) e forçar o modelo a
raciocinar sobre atributos (como gênero e idade), o sistema
deixa de memorizar interações especı́ficas e passa a aprender
padrões de preferência generalizáveis. Isso mitiga o overfitting
e permite que o modelo realize inferências robustas mesmo



para itens com poucas interações, validando a premissa de
que a riqueza semântica compensa a falta de especificidade
topológica.

V. CONCLUSÃO

Este trabalho apresentou uma investigação abrangente sobre
sistemas de recomendação neuro-simbólicos, revisitando e
estendendo o modelo Graph Collaborative Reasoning (GCR).
A reimplementação realizada não apenas validou a eficácia da
abordagem, mas redefiniu o baseline de desempenho do GCR,
superando métricas previamente estabelecidas na literatura e
confirmando a robustez do raciocı́nio lógico em grafos.

As explorações arquiteturais forneceram duas lições fun-
damentais para o design de futuros sistemas. Primeiramente,
a análise do FuzzGCR demonstrou que a imposição estrita
de consistência axiomática via operadores fixos impõe bar-
reiras severas à otimização baseada em gradiente, validando
empiricamente o uso de aproximações neurais flexı́veis. Em
contrapartida, o sucesso do FA-GCR, particularmente na sua
vertente puramente baseada em atributos, evidenciou que o fu-
turo do raciocı́nio colaborativo reside na integração semântica.
A capacidade do modelo de superar abordagens baseadas em
ID sugere que ”raciocinar” sobre as caracterı́sticas intrı́nsecas
das entidades permite uma generalização indutiva superior à
simples memorização de conexões.

Em suma, este estudo entrega à comunidade uma
implementação validada e evidências claras de que o equilı́brio
entre a estrutura lógica do grafo e a representação rica de
atributos é o caminho mais promissor para a próxima geração
de sistemas de recomendação explicáveis.

VI. TRABALHOS FUTUROS

Os resultados obtidos com o Feature-Aware GCR (FA-GCR)
abrem caminhos promissores para a evolução de sistemas
neuro-simbólicos. A seguir, delineamos direções de pesquisa
para expandir a robustez, a expressividade lógica e a aplica-
bilidade do modelo em cenários complexos.

A. Avaliação Comparativa e Robustez em Cenários Crı́ticos

Embora este trabalho tenha validado o GCR contra baselines
clássicos como o BiasedSVD, uma validação mais rigorosa é
necessária para posicionar o modelo no estado da arte atual.

• Comparação com Modelos de Recomendação SOTA:
Planeja-se comparar o desempenho do FA-GCR com
arquiteturas baseadas em Deep Learning, como SAS-
Rec [19] e BERT4Rec [18], além de GNNs puras e
eficientes como a LightGCN [20]. O objetivo é verificar
se a componente de raciocı́nio lógico oferece ganhos
estatisticamente significativos sobre a simples propagação
de embeddings ou mecanismos de atenção sequencial.

• Link Prediction em Grafos: Dado que o GCR formula a
recomendação como predição de links, trabalhos futuros
devem avaliá-lo frente a modelos de estado da arte
para essa tarefa em grafos gerais, como SEAL [21]
e GraIL [22]. Isso permitirá investigar a eficácia do

raciocı́nio lógico indutivo fora do contexto estrito de
recomendação item-usuário.

• Análise de Cold-Start e Esparsidade: O sucesso da
variante FA-GCR (w/o ID) sugere um alto potencial
para cenários de cold-start indutivo. Pretende-se realizar
testes de estresse, removendo progressivamente dados de
treinamento para quantificar a resiliência do modelo em
cenários de alta esparsidade e avaliar sua capacidade
de recomendar itens novos baseando-se puramente em
atributos.

B. Evolução Arquitetural e Expressividade Lógica

A arquitetura atual do GCR utiliza operações lógicas rı́gidas
ou simplificadas. Propomos aumentar a sofisticação do mecan-
ismo de raciocı́nio:

• Mecanismo de Atenção no Módulo OR: A operação de
disjunção (∨) atual trata todas as evidências vizinhas com
igual importância ou através de maximização simples.
Uma extensão natural é a implementação de mecanismos
de Atenção para ponderar dinamicamente a relevância
de cada caminho lógico. O desafio técnico reside na
adaptação dos regularizadores lógicos para validarem
módulos que recebem uma quantidade variável de eventos
de entrada.

• Novas Formulações Lógicas: Inspirando-se no tra-
balho de Carraro [23] sobre integração neuro-simbólica,
pretendemos explorar axiomas mais complexos, como
transitividade ou influência social. Diferentemente da
abordagem de Carraro, que utiliza Logic Tensor Net-
works (LTN) em um cenário de satisfatibilidade máxima
(soft constraints), o desafio aqui será traduzir essas
formulações para o paradigma de restrições fortes e
regularização estrutural do GCR, garantindo que o mod-
elo permaneça diferenciável.

C. Enriquecimento de Grafo e Novos Domı́nios

Finalmente, a estrutura de grafo do GCR permite a
integração de fontes de conhecimento heterogêneas:

• Grafos Enriquecidos e Modelos Hı́bridos: O grafo
atual é estritamente bipartido. Trabalhos futuros devem
avaliar a inclusão de arestas intra-tipo (social user-user ou
similaridade item-item). Além disso, propõe-se uma abor-
dagem hı́brida onde outros modelos de recomendação
sugerem arestas candidatas (”atalhos” no grafo), cabendo
ao GCR validar logicamente essas conexões.

• Cross-Domain Recommendation: A capacidade de
raciocı́nio lógico é ideal para transferência de conheci-
mento. Planeja-se avaliar o modelo em cenários Cross-
Domain, onde regras lógicas aprendidas em um domı́nio
denso podem ser transferidas para regularizar o apren-
dizado em um domı́nio alvo esparso.
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