
An Open-Source Environment to Measure Coverage
of Verilog Fuzzers

1st Rafael Fontes Sumitani
Computer Science Department

UFMG
Belo Horizonte, MG, Brazil
rafaelsumitani@dcc.ufmg.br

2nd Fernando M Quintão Pereira
Computer Science Department

UFMG
Belo Horizonte, MG, Brazil

fernando@dcc.ufmg.br

Abstract—Electronic Design Automation (EDA) tools are soft-
ware applications used by engineers in the design, development,
simulation, and verification of electronic systems and integrated
circuits. These tools typically process specifications written in
a Hardware Description Language (HDL), such as Verilog,
SystemVerilog or VHDL. Thus, effective testing of these tools
requires programs written in these languages. There are existing
resources to provide such input, such as ChiGen, a probabilistic
Verilog generator, and ChiBench, a curated suite of Verilog
programs from open-source repositories. This study presents
the development of an open-source experimental framework
designed to evaluate the code coverage achieved by Verilog
fuzzers and benchmark suites. The framework automates the
execution of coverage experiments, while enabling extensibility
and reproducibility. Experiments were conducted on widely used
open-source EDA tools to assess the testing effectiveness of
both ChiGen and ChiBench. Results demonstrate that ChiBench
consistently achieves the highest coverage, while ChiGen outper-
forms other existing fuzzers. The study underscores the utility
of ChiGen and ChiBench for testing EDA tools and highlights
the framework’s broader applicability to general code coverage
experiments.

Index Terms—code coverage, verilog, testing, fuzzing, bench-
mark

I. INTRODUCTION

EDA (Electronic Design Automation) tools are specialized
software applications used by engineers in the design, devel-
opment, simulation, and verification of electronic systems and
integrated circuits (ICs). Examples of such tools are Verilator,
Icarus Verilog, Cadence Jasper Formal Verification Platform
and Synopsys Design Compiler. EDA tools cover various
stages of the electronic design process, from conceptualization
and design entry to implementation, verification, and testing.
Therefore, ensuring the reliability and correctness of EDA
tools is of great importance, as Herklotz and Wickerson [1]
note: “[...] the final hardware is only as reliable as the logic
synthesis tool that produces it.”

All EDA tools operate on similar types of input data: pro-
grams in some Hardware Description Language (HDL), such
as Verilog, SystemVerilog, VHDL or SystemC. Thus, effective
testing of such tools requires programs in these languages. The
problem of providing abundant HDL inputs has been tackled

in previous work through two different approaches – ChiBench
[2] and ChiGen 1.

ChiGen is a fuzzer which uses a probabilistic model to
synthesize random Verilog programs. ChiGen’s probabilistic
model was built by observing programs from ChiBench, a
benchmark suite of Verilog programs mined from open-source
repositories, which can also be used by itself as input for
testing. Both ChiGen and ChiBench have been used to test
different EDA tools and were able to find a total of 9 bugs
in open-source EDA tools, thus proving their efficiency for
testing.

There are, however, other existing benchmark suites and
fuzzing tools that provide Verilog programs for the purpose
of testing EDA tools. Therefore, it would be in our interest to
compare ChiGen and ChiBench with other existing solutions
to find further evidence of their effectiveness as testing tools.
There are different metrics that can be used to make such
comparisons. The one that we have chosen is code coverage,
both for lines and for branches.

To effectively compare different Verilog test suites, we need
an experimental framework capable of efficiently obtaining
code coverage values and comparing results across program
sets. Furthermore, this framework should be extensible, en-
abling the integration of additional EDA tools and program
benchmarks as they become available. Thus, the main contri-
bution of this work is the development of such environment,
that can be used to validate the effectiveness of ChiGen and
ChiBench as testing tools.

II. BACKGROUND

A. Related Work

1) Verilog Fuzzers: The term “fuzz” was first used by
Miller et al. [3], where they generated random inputs to
test the reliability of UNIX command line utilities. The core
idea behind fuzzing is to automatically generate random, and
often unexpected, inputs to test a target program to find bugs,
vulnerabilities, or unexpected behaviors.

ChiGen, the tool implemented in our earlier work, is a
Verilog fuzzing tool based on probabilistic context-free gram-
mars (PCFGs). In summary, we have built a grammar which

1Both available at https://github.com/lac-dcc/chimera

https://github.com/lac-dcc/chimera

assigns probabilities to production rules. These probabilities
have been computed by observing a large collection of Verilog
programs, ChiBench. ChiGen also tries to embed context in
its probabilities by using n-grams. Inspired by the concept
of n-grams from Natural Language Processing [4], ChiGen’s
probabilities can be set to consider sequences of n production
rules, instead of relying solely on the current rule. By using
PCFGs and n-grams, we can synthesize programs that are
random, but are still similar to real world Verilog designs.

After synthesizing a valid Verilog syntax tree, ChiGen
applies different semantic analyses, such as type inference and
liveness analysis, before actually outputting the code in text
format. Figure 1 displays an example of a Verilog program
synthesized by ChiGen.

01 module module_1 (
02 id_1,
03 id_2
04);
05 inout wire id_2;
06 inout wire id_1;
07 id_3(
08 .id_0(1)
09);
10 reg id_4;
11 reg id_5;
12 assign id_4 = 1;
13 supply0 id_6 = (1);
14 module_0 modCall_1 ();
15 always @(negedge id_6) id_5 <= 1;
16 assign id_4 = ~id_5;
17 initial begin : LABEL_0
18 #1 id_4 <= 1;
19 end
20 endmodule

Fig. 1: Snippet of a Verilog program synthesized by ChiGen.

Along with ChiGen, there are other fuzzers that produce
Verilog designs, such as Verismith [1], LegoHDL [5], Trans-
Fuzz [6], and VlogHammer [7]. Verismith, for instance, is a
Verilog fuzzer inspired by Csmith [8], and it synthesizes pro-
grams based on probabilities, in a similar manner to ChiGen.
However, Verismith considers a limited subset of Verilog’s
grammar, and it cannot synthesize programs with more com-
plicated language constructs, such as modules and primitive
gates instantiations. Moreover, Verismith differs from ChiGen
in that it uses SMT solvers to verify that the netlist synthesized
by the tool under test is formally equivalent to the original
design, which adds a higher level of testing rigor. Therefore,
although Verismith synthesizes simpler programs, it has more
complex testing and equivalence checking capabilities.

Recent advancements in Artificial Intelligence have also
introduced tools based on Large Language Models (LLMs) for
the synthesis of Verilog designs. VeriGen [9], VerilogReader
[10], and CraftRTL [11] are examples of such models. Veri-

Gen, for instance, is a fine-tuned version of the CodeGen-
16B model that can synthesize syntactically valid Verilog code
from prompts. Although the authors highlight the capabilities
of their model to solve simple tasks, such as implementing
Verilog designs for education exercises, but they do not go into
detail regarding the usage of their model to synthesize input
for testing. This fact hinders direct comparison with fuzzing
tools, which are the focus of this work.

2) Benchmark suites: A Benchmark Suite is a collection
of programs used to test computing systems that process
such programs. There exist open source benchmark collections
tailored for EDA tools, such as the ISCAS Benchmark Cir-
cuits [12] (31 circuits), the EPFL Combinational Benchmark
Suite [13] (23 circuits), the RAW Benchmark Suite [14] (12
programs), the KOIOS collection (19 circuits implementing
different neural networks) and the Titan23 suite of 23 circuits
[15]. However, these collections contain a small number of
programs: typically less than 50. This fact is unfortunate
because, in the words of Wang and O’Boyle [16]: “Although
there are numerous benchmark sites publicly available, the
number of programs available is relatively sparse compared
to the number that a typical compiler will encounter in its
lifetime.”

The absence of large benchmark suites targeted for EDA
tools was addressed in our previous work with the introduction
of ChiBench [2]. ChiBench is a curated program collection
which consists of over 50,000 Verilog designs mined from
open-source repositories on GitHub. Programs included in
ChiBench go through an automated filtering process, which
guarantees that they are syntactically valid and adhere to key
semantic rules, such as the consistency of port directions.
All programs were taken from repositories with permissive
licenses (e.g., MIT License), which allow for public use and
distribution. The scale and diversity of ChiBench make it
uniquely suited for a range of applications, such as training
Large Language Models (LLMs) and direct testing of EDA
tools.

B. Code Coverage

Code coverage is a metric used in software testing to
measure the percentage of a code base that is exercised when
a program is tested by a particular test suite. A test with
high code coverage will have a higher chance of having bugs
detected, since a large part of the program’s source code is
executed. Currently, code coverage is a standard metric for
testing quality in the software industry, and it is adopted by
large companies such as Google [17]. Given the importance of
code coverage as a metric for testing quality, this work focuses
on coverage analysis to evaluate the effectiveness of ChiGen
and ChiBench for testing EDA tools when compared to other
test suites.

In order to measure the percentage of the source code that
is executed, different coverage criteria may be considered.
For instance, line coverage, which is one of the most adopted
criteria, defines coverage in terms of the percentage of lines
that are executed during testing. Similarly, branch coverage

assesses the ratio of control flow branches that are exercised
during program execution, providing deeper insights into what
paths of the program have been properly tested.

There are many existing tools for measuring code coverage,
which target programs in different programming languages.
GNU’s gcov and Clang’s source-based code coverage are al-
ternatives for code coverage measurement in C/C++ programs.
Most EDA tools considered in this work are implemented in
C/C++, therefore we shall consider coverage tools targeted for
these languages.

C. EDA Tools

Electronic Design Automation (EDA) tools are used in
various steps of the design of electronic systems. There are
numerous tools, both closed-source and open-source, that are
used for important tasks such as simulation (e.g., Cadence
Xcelium [18] and Verilator [19]), formal verification (e.g.,
Cadence Jasper [20] and SymbiYosys [21]), and equivalence
checking (e.g., Synopsys Formality [22] and EQY [23]).
Thus, such tools are of paramount importance to hardware
design, and ensuring the correctness and reliability of EDA
tools directly contributes to the overall reliability of the final
hardware.

In this work, we primarily focus on testing open-source
EDA tools. Since we employ coverage testing, we need to
be able to compile our target tools from source using some
code coverage tool, as mentioned in Section II-B. Therefore,
we can only do these experiments if we have access to the
tool’s source code. However, our methodology can be easily
adapted to test closed-source EDA tools by anyone who has
access to the source code.

III. METHODOLOGY

In this work we employed coverage testing for four different
EDA tools. Table I displays all used tools, along with their
versions. Furthermore, in addition to ChiGen, three other
fuzzers were used to generate designs for testing. Table II
describes fuzzers that were used in our experiments.

EDA tool Version
Verible’s syntactic analyzer [24] Commit 75c38da (2025-01-07)
Verible’s code formatter [25] Commit 75c38da (2025-01-07)
Icarus Verilog’s parser [26] Commit 30123f8 (2025-01-09)
Verilator [19] Commit 052812b (2025-01-09)

Table I: EDA tools used in coverage experiments

Fuzzer Version
Verismith [1] Commit 5077809 (2024-11-14)
TransFuzz [6] Commit 9305895 (2024-11-13)
VlogHammer [7] Commit 8c828f3 (2019-01-15)

Table II: Verilog fuzzers used in coverage experiments

ChiBench was the only Verilog benchmark suite that was
included in our experiments. As mentioned in Section II-A2,
large suites of Verilog designs for testing are scarce. Therefore,
including any test suite with less than 10,000 programs would
not lead to a fair comparison against both ChiBench and the

fuzzers, since using fewer programs is more likely to result in
lower code coverage.

To build program collections with all available fuzzers,
we opted to randomly generate 10,000 Verilog designs using
each fuzzer. VlogHammer was the only exception since it
has the limitation of only synthesizing 3061 designs. Addi-
tionally, ChiGen has a parameter which determines the size
of its context for probabilities (n-grams). Therefore, we also
ran experiments with 6 different versions of ChiGen, using
n = 1, 2, 3, 4, 5, 6. Due to ChiBench’s large size, we used a
random sample of 10,000 designs, instead of using all 50,000.
Random sampling was chosen to ensure a representative subset
while maintaining consistency with other fuzzers’ program
counts.

To obtain code coverage values, all EDA tools were com-
piled using Clang’s source based coverage to profile their
binaries for coverage. Clang’s coverage was used due to its
ease of use both for compiling programs and for producing
coverage reports, which can be generated using llvm-cov. The
version of LLVM used in our experiments was 16.0.0.

Our experiments then consisted of running each EDA tool
using all available programs sets as inputs. When obtaining
coverage for collections of programs, we collected coverage
for each individual program, but we also retained coverage
data from designs that were run previously. Thus, we were
able to analyze how code coverage progressed when adding
more designs to the experiment, and we also obtained the total
coverage achieved by each collection. After collecting cover-
age data for all pairs of EDA tools and program collections,
we can finally draw conclusions and analyses regarding the
effectiveness of ChiGen and ChiBench as testing tools.

IV. EXPERIMENTAL FRAMEWORK FOR COVERAGE
TESTING

As mentioned in Section I, one of the primary goals of this
work is to produce an experimental environment that ensures
both reproducibility and extensibility. Therefore, we had to
develop an infrastructure that would support this.

In order to facilitate the execution and the extension of
our coverage experiments, we implemented a Python script
which automates our experimental pipeline. This script calls a
separate Shell script that runs our target tools using all Verilog
designs from all collections, as described in Section III, while
saving all intermediate results in CSV format. Once all designs
are run for a tool, the Python script then produces a chart that
summarizes line and branch coverage values for that tool.

Moreover, to improve extensibility, our Python script takes
a YAML [27] configuration file which informs all EDA tools
and collections that must be used in experiments. This YAML
file also allows users of the script to customize other aspects
of the run, such as path information for the binaries of EDA
tools and visual details of the generated charts. The YAML
format was chosen due to its readability and ease of use, as
well as for its integration with Python.

Figure 2 displays an example of how our YAML con-
figuration file works. The datasets sequence specifies which

program collections will be used in our experiments. Each
item in datasets identifies a collection and configures certain
aspects, such as its name, its local path, and how it should be
represented in the final charts. On the other hand, the tools
sequence specifies EDA tools that should be used in coverage
experiments, along with details such as their local paths.

Our Python script also allows the user to customize the Shell
script that will run the target tools using the specified program
collections and collect coverage data. This not only helps cover
any unique requirements of running each tool, but we also
believe that it allows the usage of our experimental framework
for code coverage experiments that are not restricted to EDA
tools. After all, the only requirement is that this separate Shell
script runs the desired tool using the specified input and then
produces coverage data in the correct CSV format. Other than
that, it is not limited to EDA tools.

01 datasets:
02 - label: "1gram"
03 name: "1 gram"
04 path: "../chigen_programs/1gram"
06 line_color: "tab:blue"
07 line_style: "solid"
08 - label: "chibench"
09 name: "ChiBench"
10 path: "../sample_database"
11 line_color: "r"
12 line_style: "dashed"
13 tools:
14 - label: "iverilog"
15 name: "Icarus Verilog's parser"
16 binary_path: "../../iverilog/ivl"
17 - label: "verilator"
18 name: "Verilator"
19 binary_path: "../../verilator/bin/

Fig. 2: Snippet from the YAML file that can be used to
configure coverage experiments.

Our experimental framework has, however, many different
dependencies, some of which can be difficult to set up. For
instance, there may be dependencies needed to build our target
EDA tools. Thus, we have also provided a Dockerfile, that
creates a Docker image with all necessary dependencies to
simplify reproducing our experiments. This Dockerfile also
uses Shell scripts to automate the process of compiling our
target EDA tools for code coverage with Clang, which can
be a cumbersome process. The complete experimental in-
frastructure, with both the Dockerfile and the Python script,
is open-source and available at https://github.com/lac-dcc/
chimera/tree/main/coverage.

V. RESULTS

In this Section we will display and analyze the results of our
coverage experiments. The utilized version of ChiGen for these

experiments was Commit ffd99e4 (2024-12-19). A complete
description of the other fuzzers that were used is available at
Table II. Furthermore, a full description of all EDA tools that
were used in our experiments is available at Table I. Results
are presented as charts where the y-axis is the code coverage
percentage and the x-axis is the number of programs used. For
each EDA tool there are two charts – one for branch coverage
and another for line coverage.

Experiments were conducted on a Linux machine featuring
Ubuntu version 22.04 LTS, equipped with an AMD Ryzen 9
5900X 12-Core with a clock of 3.7GHz, and 32 GB of RAM
(DDR4).

A. Verible’s syntactic analyzer

Figure 3 reports code coverage values for Verible’s syntactic
analyzer. ChiBench, the only benchmark suite with human-
written programs in our experiment, achieved the highest
coverage both for branches (44%) and for lines (35%). ChiGen
did not fall behind by a lot, with all its versions achieving
more than 39% branch coverage and more than 25% line
coverage. ChiGen’s version with 1 gram context achieved
the highest coverage, whereas 2 gram and 3 gram were the
versions with the lowest coverage, but the margin of difference
was small. Verismith, VlogHammer and TransFuzz achieved
lower coverage percentages when compared to all versions of
ChiGen, with less than 33% branch coverage and 15% line
coverage. It is also evident that these fuzzers were not able to
increase their coverage values when adding more designs, as
opposed to what happened for ChiBench and ChiGen.

B. Verible’s code formatter

Figure 4 displays results for Verible’s code formatter. Re-
sults for this tool differed from those of Verible’s syntactic
analyzer. ChiBench still achieves the highest coverage values,
both for branches and for lines, at nearly 40%. However,
ChiGen is proportionally closer to ChiBench’s branch cov-
erage than it was in the previous experiment. The same
pattern was observed for the other three fuzzers. Nevertheless,
Verismith, VlogHammer and TransFuzz still presented lower
code coverage than ChiGen.

C. Icarus Verilog’s parser

Figure 5 shows the obtained results when experimenting
with Icarus Verilog’s parser. The dominance of ChiBench still
prevailed, at around 40% for both coverage criteria. ChiGen
also remained the fuzzer with the largest code coverage, at
nearly 30%. However, TransFuzz presented a much lower
coverage both for branches and for lines, and was not able
to stay close to Verismith, which was a pattern that appeared
in the experiments for other EDA tools. Another difference is
that ChiGen’s version with 6 gram was the version with the
largest code coverage.

D. Verilator

Figure 6 illustrates results for coverage experiments with
Verilator. The relative order between tools stayed the same in

https://github.com/lac-dcc/chimera/tree/main/coverage
https://github.com/lac-dcc/chimera/tree/main/coverage

0 2000 4000 6000 8000 10000
Number of programs

30

32

34

36

38

40

42

44

Br
an

ch
 c

ov
er

ag
e

(%
)

Branch coverage

0 2000 4000 6000 8000 10000
Number of programs

10

15

20

25

30

35

Lin
e

co
ve

ra
ge

 (%
)

Line coverage
Coverage for Verible's syntactic analyzer per number of programs used

1 gram
2 gram
3 gram
4 gram
5 gram
6 gram
ChiBench
VlogHammer
Verismith
TransFuzz

Fig. 3: Code coverage results for Verible’s syntactic analyzer.

0 2000 4000 6000 8000 10000
Number of programs

0

5

10

15

20

25

30

35

40

Br
an

ch
 c

ov
er

ag
e

(%
)

Branch coverage

0 2000 4000 6000 8000 10000
Number of programs

0

5

10

15

20

25

30

35

40
Lin

e
co

ve
ra

ge
 (%

)

Line coverage
Coverage for Verible's code formatter per number of programs used

1 gram
2 gram
3 gram
4 gram
5 gram
6 gram
ChiBench
VlogHammer
Verismith
TransFuzz

Fig. 4: Code coverage results for Verible’s code formatter.

this experiment; ChiBench first, then ChiGen, then all other
fuzzers. However, Verismith, VlogHammer, and TransFuzz
performed better in this experiment than they did in the
previous ones. Up until around 1,000 programs used, Veri-
smith was even able to surpass ChiGen. Nonetheless, ChiGen
continued to improve its coverage by adding more designs
whereas Verismith and TransFuzz plateaued and were not able
to achieve higher code coverage.

E. Final Remarks

The results across all four EDA tools reaffirm the effective-
ness of ChiBench and ChiGen as testing tools. Both achieve
higher code coverage values when compared to other tools,
which indicates that a larger percentage of the target tools
are being exercised. Thus, the chance for finding bugs or
unexpected behaviors is also higher.

ChiBench achieved the largest code coverage for all exper-
iments, indicating that it is a very viable collection to be used
for coverage experiments, with a diverse population of designs.
It is important to note that these experiments were performed
with a subset of ChiBench, which contains around 20% of its

actual size. Therefore, performing coverage experiments with
the entirety of ChiBench might lead to even higher coverage.

Regarding the performance for Verilog fuzzers, ChiGen
consistently outperforms other fuzzers, both for simple tools
like Verible’s code formatter, but also for more complex tools
such as Verilator. However, it was not possible to observe
any clear superiority among versions of ChiGen with different
context sizes, which may indicate that this parameter is not
too important for code coverage. One interesting observation
was that Verismith, TransFuzz and VlogHammer reach code
coverage plateaus and are not able to increase their coverage
by adding more designs to the test. This may indicate that
code synthesized by ChiGen is more diverse than the code
generated by these other fuzzers and, therefore, they will ex-
ercise different parts of our target EDA tools. This observation
could be validated further by analyzing other metrics, such as
the number of unique tokens in each collection. However, such
analyses are not in the scope of this work.

0 2000 4000 6000 8000 10000
Number of programs

10

15

20

25

30

35

40

Br
an

ch
 c

ov
er

ag
e

(%
)

Branch coverage

0 2000 4000 6000 8000 10000
Number of programs

5

10

15

20

25

30

35

40

Lin
e

co
ve

ra
ge

 (%
)

Line coverage
Coverage for Icarus Verilog's parser per number of programs used

1 gram
2 gram
3 gram
4 gram
5 gram
6 gram
ChiBench
VlogHammer
Verismith
TransFuzz

Fig. 5: Code coverage results for Icarus Verilog’s parser.

0 2000 4000 6000 8000 10000
Number of programs

10

15

20

25

30

35

40

45

Br
an

ch
 c

ov
er

ag
e

(%
)

Branch coverage

0 2000 4000 6000 8000 10000
Number of programs

5

10

15

20

25

30

35

40

45
Lin

e
co

ve
ra

ge
 (%

)

Line coverage
Coverage for Verilator per number of programs used

1 gram
2 gram
3 gram
4 gram
5 gram
6 gram
ChiBench
VlogHammer
Verismith
TransFuzz

Fig. 6: Code coverage results for Verilator.

VI. FUTURE WORK

There is still room for improvement in this work, both in our
experimental framework and in the experiments themselves.
One first improvement is related to the performance of exper-
iments. Running many different EDA tools with different large
collections of designs may take several hours – or even days.
It is quite challenging to optimize experiments for a single
tool, since the coverage for one design depends on all previous
designs that were run. However, experiments for different EDA
tools are completely independent. Therefore, one possible way
of improving performance would be to update our Python
script to run experiments for different tools in parallel. It
is important to note that running these tools and collecting
coverage may be very CPU-intensive. Thus, parallelization
should also take this factor into account in order to avoid
overloading the CPU.

There are also improvements that can be made for our
experiments. For instance, we were not able to find large
benchmark suites of Verilog designs, and thus only ChiBench
was included in our experiments. One possibility for finding
more collections of human made Verilog code is to look for

corpora of designs that have been used to train LLMs that
generate Verilog code, such as VeriGen [9]. These collections
are not specifically designed for testing, but they could be
included in our coverage experiments to enrich the results. Fur-
thermore, another possible enhancement would be to augment
our experiments by using different criteria for code coverage
(e.g., function coverage) or by combining different collections,
such as ChiBench and ChiGen, to attempt an increase in code
coverage.

VII. CONCLUSION

This work has described an open-source experimental
framework for testing code coverage of Verilog fuzzers and
benchmark suites. With its aid, we provided further evidence
supporting the usefulness of ChiGen and ChiBench – tools
developed in our previous work – as resources for testing
EDA tools. Furthermore, due to the extensible nature of this
experimental framework, it can be used to test the effectiveness
of different test suites via code coverage for different kinds
of target tools, and it is not limited to EDA. All scripts
developed as part of this study are publicly available at

https://github.com/lac-dcc/chimera, along with ChiGen and
ChiBench.

ACKNOWLEDGMENT

Rafael Sumitani thanks João Victor Amorim, Luiza de
Melo, Raissa Maciel, Augusto Mafra, and Mirlaine Crepalde
for their substantial contributions to this project.

REFERENCES

[1] Y. Herklotz and J. Wickerson, “Finding and understand-
ing bugs in FPGA synthesis tools,” in ACM/SIGDA Int.
Symp. on Field-Programmable Gate Arrays, ser. FPGA
’20. ACM, 2020.

[2] R. Sumitani, J. V. Amorim, A. Mafra, M. Crepalde,
and F. M. Q. Pereira, “Chibench: a benchmark suite
for testing electronic design automation tools,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.06550

[3] B. P. Miller, L. Fredriksen, and B. So, “An empirical
study of the reliability of unix utilities,” Commun. ACM,
vol. 33, no. 12, p. 32–44, dec 1990. [Online]. Available:
https://doi.org/10.1145/96267.96279

[4] D. Jurafsky and J. H. Martin, Speech and Language
Processing (2nd Edition). USA: Prentice-Hall, Inc.,
2009.

[5] Z. Xu, S. Guo, G. Zhao, P. Zou, X. Li, and H. Jiang,
“A novel hdl code generator for effectively testing fpga
logic synthesis compilers,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.12037

[6] F. Solt and K. Razavi, “Lost in Translation: Enabling
Confused Deputy Attacks on EDA Software with
TransFuzz,” in USENIX Security, Aug. 2025. [Online].
Available: Paper=https://comsec.ethz.ch/wp-content/
files/mirtl sec25.pdfURL=https://comsec.ethz.ch/mirtl

[7] YosysHQ. Vloghammer. ”Accessed: 2025-01-20”. [On-
line]. Available: https://yosyshq.net/yosys/vloghammer.
html

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
understanding bugs in c compilers,” in Proceedings of
the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’11.
New York, NY, USA: Association for Computing
Machinery, 2011, p. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

[9] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-
Gavitt, R. Karri, and S. Garg, “Verigen: A large language
model for verilog code generation,” ACM Trans. Des.
Autom. Electron. Syst., vol. 29, no. 3, apr 2024. [Online].
Available: https://doi.org/10.1145/3643681

[10] R. Ma, Y. Yang, Z. Liu, J. Zhang, M. Li, J. Huang,
and G. Luo, “Verilogreader: Llm-aided hardware
test generation,” 2024. [Online]. Available: https:
//arxiv.org/abs/2406.04373

[11] M. Liu, Y.-D. Tsai, W. Zhou, and H. Ren, “Craftrtl:
High-quality synthetic data generation for verilog
code models with correct-by-construction non-textual

representations and targeted code repair,” 2024. [Online].
Available: https://arxiv.org/abs/2409.12993

[12] F. Brglez, D. Bryan, and K. Kozminski, “Combinational
profiles of sequential benchmark circuits,” in ISCAS.
New York, USA: IEEE, 1989, pp. 1929–1934.

[13] L. Amaru, P.-E. Gaillardon, E. Testa, and G. D.
Micheli, “The epfl combinational benchmark suite,”
Feb. 2019. [Online]. Available: https://doi.org/10.5281/
zenodo.2572934

[14] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua,
M. Taylor, J. Kim, S. Devabhaktuni, and A. Agarwal,
“The raw benchmark suite: computation structures for
general purpose computing,” in FCCM. USA: IEEE
Computer Society, 1997, p. 134.

[15] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz,
“Timing-driven titan: Enabling large benchmarks and
exploring the gap between academic and commercial
cad,” ACM Trans. Reconfigurable Technol. Syst., vol. 8,
no. 2, mar 2015. [Online]. Available: https://doi.org/10.
1145/2629579

[16] Z. Wang and M. O’Boyle, “Machine learning in compiler
optimisation,” 2018.

[17] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code
coverage at google,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery,
2019, p. 955–963. [Online]. Available: https://doi.org/
10.1145/3338906.3340459

[18] Cadence Design Systems, Inc. Xcelium
logic simulator. ”Accessed: 2025-01-19”.
[Online]. Available: https://www.cadence.com/
en US/home/tools/system-design-and-verification/
simulation-and-testbench-verification/xcelium-simulator.
html

[19] W. Snyder, Verilator Manual, 2024, accessed: 2025-01-
19. [Online]. Available: https://veripool.org/ftp/verilator
doc.pdf

[20] Cadence Design Systems, Inc. Jasper formal
verification platform. ”Accessed: 2025-01-19”.
[Online]. Available: https://www.cadence.com/
en US/home/tools/system-design-and-verification/
formal-and-static-verification.html

[21] YosysHQ. Symbiyosys (sby) documentation. ”Accessed:
2025-01-19”. [Online]. Available: https://symbiyosys.
readthedocs.io/en/latest/

[22] Synopsys, Inc., Formality: Equivalence Checking
and Interactive ECO, ”Accessed: 2025-01-19”.
[Online]. Available: https://www.synopsys.com/content/
dam/synopsys/implementation&signoff/datasheets/
formality-and-formality-ultra-ds.pdf

[23] YosysHQ. Equivalence checking with yosys (eqy) docu-
mentation. ”Accessed: 2025-01-19”. [Online]. Available:
https://yosyshq.readthedocs.io/projects/eqy/en/latest/

[24] CHIPS Alliance. verible-verilog-syntax. ”Accessed:

https://github.com/lac-dcc/chimera
https://arxiv.org/abs/2406.06550
https://doi.org/10.1145/96267.96279
https://arxiv.org/abs/2407.12037
Paper=https://comsec.ethz.ch/wp-content/files/mirtl_sec25.pdf URL=https://comsec.ethz.ch/mirtl
Paper=https://comsec.ethz.ch/wp-content/files/mirtl_sec25.pdf URL=https://comsec.ethz.ch/mirtl
https://yosyshq.net/yosys/vloghammer.html
https://yosyshq.net/yosys/vloghammer.html
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3643681
https://arxiv.org/abs/2406.04373
https://arxiv.org/abs/2406.04373
https://arxiv.org/abs/2409.12993
https://doi.org/10.5281/zenodo.2572934
https://doi.org/10.5281/zenodo.2572934
https://doi.org/10.1145/2629579
https://doi.org/10.1145/2629579
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.1145/3338906.3340459
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://veripool.org/ftp/verilator_doc.pdf
https://veripool.org/ftp/verilator_doc.pdf
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://symbiyosys.readthedocs.io/en/latest/
https://symbiyosys.readthedocs.io/en/latest/
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/formality-and-formality-ultra-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/formality-and-formality-ultra-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/formality-and-formality-ultra-ds.pdf
https://yosyshq.readthedocs.io/projects/eqy/en/latest/

2025-01-20”. [Online]. Available: https://chipsalliance.
github.io/verible/verilog syntax.html

[25] ——. verible-verilog-format. ”Accessed: 2025-01-
20”. [Online]. Available: https://chipsalliance.github.
io/verible/verilog format.html

[26] Stephen Williams. Ivl - the core compiler. ”Accessed:
2025-01-20”. [Online]. Available: https://steveicarus.
github.io/iverilog/developer/guide/ivl/index.html

[27] The YAML Project. The official yaml web site.
”Accessed: 2025-01-20”. [Online]. Available: https:
//yaml.org/

https://chipsalliance.github.io/verible/verilog_syntax.html
https://chipsalliance.github.io/verible/verilog_syntax.html
https://chipsalliance.github.io/verible/verilog_format.html
https://chipsalliance.github.io/verible/verilog_format.html
https://steveicarus.github.io/iverilog/developer/guide/ivl/index.html
https://steveicarus.github.io/iverilog/developer/guide/ivl/index.html
https://yaml.org/
https://yaml.org/

	Introduction
	Background
	Related Work
	Verilog Fuzzers
	Benchmark suites

	Code Coverage
	EDA Tools

	Methodology
	Experimental Framework for Coverage Testing
	Results
	Verible's syntactic analyzer
	Verible's code formatter
	Icarus Verilog's parser
	Verilator
	Final Remarks

	Future Work
	Conclusion

