
The Effectiveness of Using GNN for Detection of DoS Attacks
in the Security Message Transmission System in VANETs

Samuel Henrique Miranda Alves , Aldri Luiz dos Santos1

1Departamento de Ciência da Computação (DCC)
Instituto de Ciências Exatas (ICEx)

Universidade Federal de Minas Gerais (UFMG)
January 2025

{samuelhenrique,aldri}@dcc.ufmg.br

Abstract. Denial of Service attacks have become a disrupting issue for modern
applications. In the context of autonomous vehicles, this problem can affect the
users in many ways, ranging from security data breaches to a crash in the car’s
system, which prevents the broad availability of these services to society. In
recent years, a vast majority of studies have proposed the use of contemporary
Machine Learning techniques to assist in the detection of these anomalies. Nev-
ertheless, they still cannot cope with the fast-paced nature of this adversarial
attack. In this work, we propose to study a trendy method called Graph Neu-
ral Networks to evaluate its effectiveness over these challenges in the vehicular
network context, specifically regarding the security message transmission sys-
tem, using a publicly available dataset. The measured metrics achieved great
performance compared to other traditional classifiers, which emphasizes the
robustness of this model and paves the way for future works looking to assess
stronger variables and sophisticated scenarios.

1. Introduction
Given the quick development of network systems in the past few years, the technologies
concerning the scenario of Intelligent Transportation Systems (ITS) have drawn a lot of
attention, because they provide smart solutions for the problems related to vehicle traffic
[Alam et al. 2016]. Among the different advantages, we can state the smart monitoring
and control of land transportation, improvement of the security service quality, deploy-
ment of mobility services guided to users, etc. All of this contributes to the increase in
the efficiency of transport and the prevention of dangerous scenarios, such as accidents
[Hadded et al. 2015]. Yet, despite all the tests and investments being conducted in this
area, there is still a significant number of obstacles that impede the delivery of this tech-
nology to society.

Autonomous vehicular network systems operate based on the exchange of safety
messages, known as Basic Safety Messages (BSM). They can be used by safety appli-
cations to prevent hazardous situations in time. In the face of the heterogeneous context
and ephemeral characteristics of a vehicular network, these messages must be exchanged
rapidly between network devices (on average, 10 times per second or every 100 ms) to en-
able continuous monitoring of the system’s elements. This necessity to rapidly share data
with multiple neighboring vehicles, infrastructure units, and other devices increases the



2

system’s vulnerability to potential intruder attacks. Among the areas where such attacks
cause damages, the system’s availability arises as one of the most critical security func-
tionalities, as this directly impacts communication between network components. In this
context, Denial of Service attacks (DoS) represent one of the most well-known and recur-
ring types of intrusion. DoS attacks occur when a malicious agent disrupts services by
interfering with the channel, overloading the network, and/or causing packet loss, render-
ing the network fully or partially unavailable to genuine users [Ahmed and Elhadef 2019].
This involves one of the most common attacks in a vehicular network and can be perpe-
trated by an attacker both within and outside the network.

Following these lines, a lot of research over the years has investigated the use of
Machine Learning methods to assist in the protection of these systems. Even though they
achieved great accuracy, most of the times they were not considered for use in the real-
world application scenarios [Sommer and Paxson 2010]. This can be explained because
the studied models underlie their analysis from the network traffic data to find features that
allow the recognition of the attacks. Considering the context of computer networks, the
applications in real life hold a dynamic configuration, which means that these features can
be easily modified for attackers to conceal their identity [Corona et al. 2013]. Thereby,
new solutions focused on studying the attack structure pattern are required, instead of
working on the features of the data flow, in order to make the methods more robust. We
could achieve this by modeling the network as a graph, as this allows visualization of the
arrangement of the elements and, thus, by applying algorithms on the graph topology, we
are able to examine the structure of the network and the relationship of its components.
Unlike the features from the traffic data, the attacks’ intrinsic patterns cannot be modified
by an intruder, which is a better way to tackle this issue.

Therefore, in this work, we intend to analyze the effectiveness of using Graph
Neural Networks (GNN) to assist in the detection of DoS attacks for the security mes-
sage transmission system of Vehicular Ad-hoc Networks. The idea consists of shaping
the network elements in a graph form and classifying its feature patterns into a benign
or malignant flow, to capture not only the characteristics of individual components, but
also their relationships within the network. For the experimental part of this project, we
first chose a publicly available dataset named DARE [HAIDAR et al. 2020]. This dataset
contains reports of anomalous behaviors entities identified by the vehicles during the ex-
change of BSM messages, as well as the content of each message. We, then, filtered the
data to consider only the DoS type of attacks and used it to train the algorithm deployed
in our previous work.

In the next phase, we focused on selecting metrics to evaluate our proposal. We
initially considered metrics that measure the performance of the algorithm and its effi-
ciency for the classification task. After that, we also tested the same dataset with different
models of Machine Learning to compare the results yielded between them. Finally, we
selected some explainable graph metrics to assess the robustness of our model to remain
solid over potential changes in the network traffic. The final results showed that our
solution outperformed all the other classifiers used for comparison, besides keeping the
same accuracy when artificial modifications were applied to the dataset, whereas the other
models decreased their respective metrics. Hence, our work sheds light on the potential of
using Graph Neural Networks for the job of detecting intrusion anomalies in the dynamic



3

Figure 1. Training steps of a GNN. [MITRA et al. 2024]

environment of vehicle networks.

2. Background
In our project, we are broadly interested in applying GNN methods to support the cyber-
security systems of vehicular communications. In the following subsections, we will
introduce the main concepts regarding these topics and review the current state-of-the-art,
based on recent studies that cover the proposed areas of this work.

2.1. Graph Neural Networks

Graph Neural Networks (GNNs) are a recent neural network family in the Artificial In-
telligence scope specifically designed to learn and generalize over graph-structured data,
by capturing and modeling the inherent patterns in graphs [Scarselli et al. 2008]. The es-
sential foundation of GNNs relies on converting the graph structure of our problem into a
valid input for classical Neural Network (NN) frameworks to perform traditional machine
learning tasks, such as classification, regression, or clustering. The representation of the
problem data using a graph form emerges as a good way to provide the means of cap-
turing complex relationships between entities, utilizing the relations with the two basic
components: nodes and edges [Franceschi et al. 2019].

There are mainly three general problems for graphs in the machine learning scope:
node classification, link prediction, and graph classification [Wu et al. 2023]. In node-
level classification, the GNN model assigns each node to one or more predefined classes
or predicts a continuous value associated with the node based on its node feature embed-
ding from the neighboring nodes. Link prediction is the problem of predicting new links
between the nodes [Xian et al. 2022]. In graph-level classification, the GNN should learn
to classify entire graphs into specific categories. The GNN should effectively capture and
aggregate information from all the nodes and edges in the graph to make predictions about
the graph as a whole.

The GNN ability to collect the inherent data from the underlying complex relation-
ships of a graph stems from two prime functions of the GNN framework: (1) aggregation
and (2) update, as shown in Figure 1. Each node has its own vector of embedding fea-
tures, which can also include information about its edges. Starting from an initial part
of the graph and repeating this process over multiple iterations, the framework learns the
information of one specific node from its vector features and shares this data with its
neighbors. The received information is then aggregated to form the input for the next
step. This is called the aggregation process. The update step simply consists of updating
the nodes’ embedding using the learned/aggregated information [Xu et al. 2019]. Since
the emergence of GNN frameworks in the last decade [Scarselli et al. 2008], many GNN



4

methods have been proposed, which only differentiate from the various AGGREGATE(·)
and UPDATE(·) functions created, such as Graph Convolutional Networks (GCN) and
Graph Attention Network (GAT).

One of the popular approaches to learning with graph-structured data is to make
use of graph kernels (functions that measure the similarity between graphs) plugged into a
kernel machine, such as a support vector machine [Kriege1 et al. 2020]. Kernel methods
refer to machine learning algorithms that learn by comparing pairs of data points using
particular similarity measures — kernels. Another popular approach to training unsuper-
vised GNNs is through the use of classic autoencoder frameworks. Autoencoders were
first introduced in [McClelland and Rumelhart 1986] as neural networks that are trained
to reconstruct their inputs. Specifically, an autoencoder consists of two components, an
encoder and a decoder. The encoder compresses each data point into a low-dimensional
vector representation, whereas the decoder works to reconstruct the original information
from that vector.

However, existing graph autoencoders lack the motivation to represent an entire
neighborhood of the graph nodes, and are primarily designed to decode only direct links
between pairs of nodes, resulting in a minimization of the link reconstruction loss. The
fundamental difficulty in reconstructing all receptive fields of GNNs is due to the non-
trivial design of a reconstruction loss in the irregular structures of the graph. Unfortu-
nately, oversimplification in connection reconstruction causes the learned node represen-
tations to lose a lot of information and thus provides undesirable performance in many
downstream tasks, which is one of the challenges for the use of GNNs, especially for
wide-data problems that generate sparse and dense graphs.

2.2. Vehicular Ad-Hoc Networks
Vehicular Ad-Hoc Networks (VANETs) are a complex vehicle communication system
based on smart vehicles and base stations that share information via wireless commu-
nications. It can also include other communication entities around them, such as road-
side units, clouds, fog and grid networks, and Internet devices carried by individuals and
pedestrians, which creates a dynamic and challenging network. Automated Vehicles (AV)
are categorized into six levels of automation, ranging from 0 to 5, as shown in Figure 2
[Lamnabhi-Lagarrigue et al. 2017]. We are currently at level 2, which contains a partial
degree of automation. Vehicles above level 3 are still under research and do not require the
driver to keep their hands on the steering wheel. The evolution of Connected Autonomous
Vehicles (CAVs) towards the full level of driving automation indicates that futuristic ve-
hicles will be very dependent on sensors and that navigation decisions will be dependent
on the quality of the collected data.

Autonomous vehicular network systems operate based on a cooperation mech-
anism between stations located both within the road infrastructure and in the compo-
nents of the vehicles themselves (Intelligent Transportation Systems Stations - ITS-S).
These stations, such as the On-Board Units (OBUs) in vehicles or the Road-Side Units
(RSUs) on the roadways, send and receive messages throughout the vehicular network
[Lu et al. 2014]. Vehicles can exchange messages with each other, a type of architecture
known as V2V, or with the network infrastructure, known as V2I communication, as illus-
trated in Figure 3. The safety messages exchanged between them can be transmitted via
full broadcast, sent regularly throughout the network, and contain information such as the



5

Figure 2. Driving automation levels. [Baccari et al. 2024]

position, speed, and acceleration of nearby vehicles or event-specific alert messages, such
as roadworks or emergency stops [Nagarajan et al. 2023]. These safety messages, known
as Basic Safety Messages (BSM), are used by safety applications to prevent hazardous
situations in time.

Due to sensor data uncertainties caused by cyber attacks, autonomous driving sys-
tems require a sophisticated design to capture those abnormalities and eventually mitigate
their impacts [Wang et al. 2020]. DoS attacks act as one of the most common types of
intrusions, as they can be perpetuated in different ways. There are two main possible im-
plementations of DoS attacks in the context of VANETs: (1) the attacker repeatedly sends
false accident messages to a nearby vehicle, keeping it occupied with the process of veri-
fying the message’s authenticity instead of focusing on useful communication processes;
and (2) the attacker targets RSUs with the same strategy, making the communication sys-
tem with other vehicles unavailable. Therefore, a solution aimed at mitigating this type of
attack must consider these two possible scenarios. Because of this, anomaly detection is
an essential task to guarantee the safety of autonomous vehicles and the certainty of their
decisions.

Thus, it is mandatory to implement Anomaly Detection Systems (ADS) capa-
ble of mitigating the negative impacts that anomalies can cause on the navigation deci-
sions of the CAVs [Masmoudi et al. 2019]. An ADS for CAVs is a collection of mecha-
nisms/algorithms that makes it possible to identify, isolate, and prevent any deviation from
the normal state of the CAV system towards an abnormal situation due to several causes
discussed previously. The ADS is characterized by several tasks, primarily monitoring
the system state and collecting data against anomalies using advanced algorithms. Eval-
uation metrics help improve the reliability and safety of driverless vehicles by ensuring
high-quality solutions for preventing potential incidents and detecting anomalies. Several



6

Figure 3. Communication types in a VANET [Nagarajan et al. 2023]

metrics are used to measure the technique’s performance and they are varied depending
on the type of approach used (i.e., Machine Learning, Deep Learning, or Statistical Learn-
ing). These metrics mainly include Accuracy, Precision, Recall, F1-score, Mean Squared
Error (MSE) and more [Limbasiya et al. 2022], which are some of the evaluations we
used in the experimental part of this work.

3. Related works
Despite being a topic that has only recently sparked interest in the scientific community,
there are already a variety of studies addressing the two main subjects of this work, which
are the use of GNNs in the context of cyber-attacks and the security of autonomous vehicle
systems. Among them, the main reference to be followed is [da Silva et al. 2023]. In their
work, the authors proposed the creation of a learning methodology in VANETs topology
that prioritizes data anonymization and can be used with any graph learning method.
Additionally, the study confirms the quality of using graph models applied within the
context of vehicular networks and autonomous cars. Thus, the authors conclude that
even with small pieces of information regarding graph topology, in order to respect user
privacy, it is possible to extract important and relevant information that can be useful in
traffic analysis and accident prevention in the era of autonomous vehicles.

In this other study [Pujol-Perich et al. 2021b], which will also serve as a guide for
this research, the authors explore a different way of structuring the network as a graph,
referred to as a host connection graph. They propose representing each network flow as
a node in the graph. Given a set of flows, a host-connection graph includes a node for
each distinct host involved—whether sending or receiving traffic. Thus, for a flow f, with
a source host S and a destination host D, two undirected edges are created: one from the
source host to the flow (S → f) and another from the flow node to the destination host
(f → D). A simpler representation would consider only the hosts as the graph nodes and
the flows as edges connecting the source and destination hosts. However, the decision to
add specific nodes representing each flow was motivated by the operational principles of
GNN models. GNNs treat the hidden states of nodes in input graphs as the only learnable
objects. Consequently, to properly learn the characteristics of flows, it is necessary to



7

Figure 4. Cyber-attacks flows represented as graphs. [Pujol-Perich et al. 2021a]

add them as nodes in the graph. This approach is particularly interesting for learning
about network flows in the context of cyberattacks, as attacks follow unique patterns that
can be identified through their inherent behaviors. The research results reveal significant
performance consistency when presenting the proposed model with unseen data during
training, a characteristic that is challenging for more traditional models to achieve. A
graphical representation of the concept discussed in this paper can be seen in Figure 4.

Similarly, within the approach of Machine Learning methods for intrusion detec-
tion in connected autonomous vehicle environments, a study by [Nagarajan et al. 2023]
analyzes the current state-of-the-art in this field, providing extensive coverage of the var-
ious areas that need to be examined to achieve satisfactory results. The authors aim to
present a comprehensive discussion of the existing concepts in the field of autonomous
vehicles, addressing the various types of systems and communications within the network,
and highlighting the current strategies being employed in the field of Machine Learning
to address cybersecurity issues within each of these domains. Among the areas discussed,
they examine the operation of intra-vehicular communications (communication between
devices within the vehicle) and inter-vehicular communications (communication between
devices outside the vehicle), as well as the currently available datasets for each of these
infrastructures. This study, therefore, will serve as a conceptual and referential guide for
developing our solution.

Finally, focusing specifically on the security of autonomous vehicle systems, this
study [Hidalgo et al. 2021] highlights how increasing the security and privacy of au-
tonomous vehicles against dangerous cyberattacks will lead to a considerable reduction
in the global number of deaths and injuries caused by accidents. Therefore, it is crucial to
place significant emphasis on the security of communication for these vehicles and ensure
their proper functioning, even while under attack, as they represent a high-risk system. In
this context, the study introduces a project called SerIoT, which provides a strategy for
real-time monitoring of traffic between different IoT platforms used by autonomous ve-
hicle systems. According to the authors, this tool is capable of recognizing suspicious
patterns, evaluating them, and ultimately providing decisions to mitigate such actions.
Additionally, the authors employ a GNN framework to detect attacks within the network,
with a metric evaluation of the results that could serve as a reference for analyzing the
model in our work. Notably, the article also demonstrates several strategies that can be



8

Figure 5. DARE dataset format. [HAIDAR et al. 2020]

applied within the VANET context to prevent the consequences of attacks on the system,
which will undoubtedly be highly valuable for our research as well.

4. Applied Methodology
This section describes the steps and decisions taken to implement the experimental part
of this project. The concept of modeling the network in a graph form followed the previ-
ously explained host-connected proposal provided by [Pujol-Perich et al. 2021a] (Figure
4). This way of representing the graph including heterogeneous elements (i.e., hosts and
flows) led the authors to devise a new message-passing architecture specifically adapted
to process and learn the host-connection graph features (Figure 6). Each node has its
own hidden state (features vector), which is refreshed (update step) considering the data
accumulated in the gather function (aggregation step). The aggregation step simply em-
ploys a compression function to concatenate the hidden states of two connected nodes.
Afterward, the hidden states are updated considering the information collected in the new
aggregated message. This is done by applying the update function to the aggregated mes-
sage and the current hidden state of the node. As a result, all of the functions used in both
steps are learnable functions that can be approximated by neural networks during training.
Particularly, the authors implemented the compression functions of the aggregation step
as 2-layer fully connected NNs, while the update functions are modeled as Gated Recur-
rent Units (GRUs [Chung et al. 2014]). Finally, the readout function takes as input the
final hidden states of each flow and outputs the predicted class for the flow (either a spe-
cific attack or benign traffic). This function is implemented with a 3-layer fully connected
NN, where all the possible output classes are represented via one-hot encoding.

For the experimental part, we used a publicly available dataset named DARE
[DARE-dataset 2024]. This dataset provides details about the specific VANET transmis-
sion system of interest to us. It includes a large number of misbehavior reports encoded
in JavaScript Object Notation (JSON), as shown in Figure 5. Therefore, we processed
the data to suit the required format as an input for our algorithm. First, we selected the
most important features for our work: receiver and sender vehicle ID, attack label, and the
BSM messages content (GPS coordinates, position, speed, acceleration, heading). Then,
we filtered the data to consider only the DoS types of attacks, since it contained a group
of eight different malicious anomalies. Lastly, we divided the filtered file into random



9

Figure 6. Illustration of the message-passing phase for the host-connection proposed graph.
[Pujol-Perich et al. 2021a]

splits of 80% and 20% samples for the training and validation steps of the algorithm, re-
spectively, and converted it to Comma-Separated Values (CSV) format. All the actions
conducted in this part of the project were performed under the operation of the pandas
library written for the Python language.

5. Evaluation
The evaluation procedure took into account the selection of various metric performances
and different state-of-the-art ML-based NIDS algorithms for comparison purposes (De-
cision Tree, Random Forest, XGBoost and Multi-Layer Perceptron). These classifiers
were deployed using the scikit-learn library and trained using the default parameters of
the individual functions. To assess the performance of the algorithms over the classifica-
tion task, we used the traditional measurements of a predictive model: accuracy, recall,
precision, macro-F1, weighted-F1, and specificity. From that, we selected only the ac-
curacy and the weighted-F1 as comparable scores between the models, since they unify
in a single metric the precision and recall measures of the solutions. Moreover, we also
chose the inference time and computational cost (CPU and RAM resources usage) as an
evaluation of the efficiency metrics for each model. The inference time calculation was
performed measuring the interval time for the models to predict all the sample inputs in
the validation data. In conjunction with this task, the computational cost was quantified
tracing the information retrieved by the top Linux command on terminal.

At last, we also selected some explainability metrics of a GNN architecture, in
order to assist in interpreting the generic ability of the model to correctly classify unseen
data. According to [Yuan et al. 2022], there are three recently proposed evaluation met-
rics for explanation tasks: fidelity, sparsity, and stability. Fidelity and sparsity identify
input features that are important for the model and ignore the irrelevant ones. Fidelity
is defined as the difference of accuracy (or predicted probability) between the original
predictions and the new predictions after masking out important input features. Sparsity
measures the fraction of features selected as important by explanation methods. For both



10

Figure 7. Formulas used for the explainable metrics [Yuan et al. 2022]. Here, yi is the original predic-
tion of graph i and N is the number of graphs. 1 - mi means the complementary mask that removes
the important input features. The indicator function 1(ŷi = yi) returns 1 if ŷi and yi are equal and
returns 0 otherwise. mi denotes the number of important input features (nodes/edges/node features)
identified in mi and Mi means the total number of features.

metrics, higher values indicate better explanation results. Figure 7 depicts the formulas
used for each metric.

The stability metric measures whether an explanation method is stable. The key
idea of stability is to apply small changes to the input graph without affecting the predic-
tions and measure the difference between the results. Hence, we decided to artificially
increase the value in some features of the training dataset and reevaluate the model with
the validation dataset. Specifically, we randomly selected 15% of the training dataset,
added an arbitrary constant value to its features, and trained the model again with the
same hyperparameters and metrics. We also retrained the other classifier models and
compared the results to evaluate the difference of robustness among them.

5.1. Results

All the training and development process was conducted on a computer having 13th Gen
Intel(R) Core(TM) i5-1334U CPU with 4.60 GHz processing frequency, 16GB of main
memory and the machine is operated with 64-bit Ubuntu 22.04 LTS operating system.
The GNN algorithm was created using the tensorflow framework for machine learning
and the metrics were measured using the open-source Keras library that provides a Python
interface for artificial neural networks. For the first experiment, we trained the algorithm
over 100 epochs, whereas each epoch contained 1000 steps (iterations over the data). The
model hyperparameters used for the implementation design and performance evaluation
process are shown in Table 1. Table 2 shows the results reported by the final step of some
epochs. The rows of the table representing the metrics are presented as follows:

Table 1. GNN hyperparameters used during the development process

Parameter Name Value

Loss Function Binary Cross Entropy

Optimizer Adam

Learning rate 0.001

Number of epochs 100

Steps per epoch 1000

Validation steps 100

Batch size 16



11

Table 2. Results of the GNN algorithm trained with 100 epochs

Epochs 1st epoch 10th epoch 20th epoch 50th epoch 100th epoch

Loss 0.5146 0.1651 0.1412 0.0773 0.0878

Categorical Accuracy 0.7317 0.9491 0.9597 0.9772 0.9779

Specificity at sensitivity 0.9956 0.9966 0.9968 0.9979 0.9974

Recall 0 0.4918 0.9326 0.9455 0.9633 0.9617

Precision 0 0.5628 0.9025 0.9247 0.9619 0.9665

Recall 1 0.8352 0.9562 0.9660 0.9833 0.9852

Precision 1 0.7921 0.9703 0.9757 0.9839 0.9830

Macro F1 0.6690 0.9403 0.9529 0.9731 0.9741

Weighted F1 0.7262 0.9493 0.9599 0.9772 0.9779

• Loss: expected error generated by the utilized loss function (binary cross-entropy).
• Categorical Accuracy: measures the proportion of correctly predicted classes

among all predicted classes. In other words, it calculates how often the predicted
output matches the true output.

• Specificity at sensitivity: computes best specificity where sensitivity is greater
or equal than 0.1 (specified value chosen for our model). Sensitivity, also known
as recall, measures how well a model can detect positive instances. Specificity
measures how well a model can detect negative instances.

• Recall 0: recall metric for the DoS label (proportion of DoS attacks that are cor-
rectly identified by the model).

• Precision 0: precision metric for the DoS label (proportion of DoS attacks that
are correctly predicted by the model).

• Recall 1: recall metric for the benign label (proportion of benign flows that are
correctly identified by the model).

• Precision 1: precision metric for the benign label (proportion of benign flows that
are correctly predicted by the model).

• Macro F1: F1 score calculated by unweighted average of precision and recall.
• Weighted F1: F1 score calculated by weighted average of precision and recall.

The weight used for each label is the number of true instances.

As we can see from Table 2, the metrics used to evaluate our model produced
great performance, since every measure at the end of the 100th epoch (last column of
the table) was greater than 96%. It is important to realize how the metrics evolved over
time, generating better results for each step of the epochs. The biggest modifications
came on between epochs first and tenth, where, for example, the accuracy changed from
0.7317 to 0.9491 and the Recall 0 metric jumped from 0.4918 to 0.9326. The best results
position in between the 50th and 100th epochs, as highlighted in the table. However, the
results difference among these two parts usually varies at the last decimal places, which
represents a small impact in the solution. Therefore, we selected the 100th epoch as the
stopping step in the training phase.

For the second experiment, we used the same dataset samples to train other ML
classifiers and compare the results. Figure 8 shows the results of this experiment, which
measured initially only the predictive metrics. The GNN model achieved the best results
among the classifiers, alongside the Random Forest algorithm. Then, we also measured



12

Figure 8. Comparison of different ML models trained with the same data

Table 3. Performance metrics of each model measured using the validation dataset

Classifier Inference time (s) CPU usage (%) RAM usage(%)

GNN 5.69 415.3 5.4

Decision Tree 1.43 50.2 1.6

Random Forest 53.79 106.7 1.8

XGBoost 6.63 1195 2.0

MLP 1.65 1196 2.1

the computational cost and inference time of each model to evaluate its performance over
the classification task. Table 3 displays the results for this experiment. In some cases,
the CPU usage surpassed the 100% threshold because the machine CPU has 12 cores,
and, therefore, the actual limit is 1200%. The Decision Tree model appears to be the
most lightweight one, as it is also the most simple. Since the GNN model is trained over
100 epochs, it is expected to reach high levels of computational cost. Additionally, the
inference time presented a reasonable result compared to the other cases.

In the third experiment, we measured the explainability metrics for a graph model.
Figure 9 illustrates the results achieved in this part. As mentioned above, higher values
for both metrics indicate a good sign, proving that the graph is evolving over the training
phase to consider only the features (nodes and edges) that are more relevant to the predic-
tive task. A higher value for the fidelity metric suggests that discriminative features are
being identified by the model. On the other hand, higher values for the sparsity metric
show that the explanations are more sparse and tend to only capture the most important
input information. Thereby, these patterns can be observed in our model according to
Figure 9, as both metrics are increasing over time.

In the end, we performed our last experiment of artificially modifying the train-
ing dataset and observing the impacts of this change in the metrics, in order to evaluate
the robustness and stability of the models. Table 4 demonstrates the results collected in
this experiment for the GNN model. The results show little difference between Table
2, when the algorithm was trained with the regular data, and seemingly tend to be con-
verging over the last epochs. The most significant alterations were noted amid the Recall
0 and Precision 0 metrics, that represent the predictive values for the DoS attack label,
where they decreased from 0.9617 to 0.9456 and from 0.9665 to 0.9373, respectively.



13

Figure 9. Explainable GNN metrics measured during the training phase.

Nonetheless, they still imply good performances for the prediction task. This represents
that the noises artificially generated in the data did not impact the predictive ability of
the model, meaning it holds great stability and is robust to perturbations in unpredictable
situations. Besides that, we also utilized the same noisy data to evaluate the performance
of the other models in this scenario. Figure 10 describes the results of this process. Not
surprisingly, all the other classifiers decreased their corresponding metrics, except for the
MLP model, which already had lower measurements in the past. Meanwhile, the GNN
model maintained its high values, decreasing merely 0.01 points for both metrics.

Table 4. Results of the GNN algorithm trained with artifical noisy data

Epochs 1st epoch 10th epoch 20th epoch 50th epoch 100th epoch

Loss 0.3971 0.1962 0.1625 0.1353 0.1141

Categorical Accuracy 0.8385 0.9306 0.9478 0.9604 0.9643

Specificity at sensitivity 0.9949 0.9971 0.9966 0.9973 0.9979

Recall 0 0.7340 0.9061 0.9151 0.9340 0.9456

Precision 0 0.7333 0.8703 0.9134 0.9354 0.9373

Recall 1 0.8839 0.9413 0.9621 0.9718 0.9725

Precision 1 0.8843 0.9585 0.9629 0.9712 0.9763

Macro F1 0.8089 0.9188 0.9384 0.9531 0.9579

Weighted F1 0.8385 0.9310 0.9478 0.9603 0.9644

Finally, we discuss some limitations and potential improvements of our project.
The biggest constraint of this work lies on the dataset weaknesses. In addition to being
a relatively old dataset produced in 2020, in order to increase the input amount of data
(number of observations) for our algorithm, we joined some of the DoS attacks sub-
classes, such as Distributed DoS (DDoS), DoS-Disruptive, DoS-DataReplay, etc., and
labeled them as pure DoS. This could eventually lead to a wrong evaluation of the model
in some cases, since the patterns differ from each other in some of these attacks. Thus, we
should consider using different attacks’ classes in future works and note whether the GNN
model keeps its same effectiveness. Furthermore, it is worthwhile mentioning that there



14

Figure 10. Different ML models trained with artificial noisy data

is a strong demand for concrete and public datasets regarding the VANET environment,
as we had difficulty finding the desired dataset for our specific VANET system. This way,
the use of simulation tools to enhance the quality of the data is well accepted for future
developments of this work.

6. Conclusion
Solutions for intrusion detection in autonomous vehicles are essential to prevent a failure
of these systems. While a lot of Machine Learning techniques were invented over the
past few decades and tested for this specific context, most of them failed to come up
with a good generalization method for the application scenarios in real life. To overcome
this constraint, recently researchers have been examining the power of GNN models to
generalize network problems involving cyber attacks. This work intended to join these
two areas, which is something scarce, if not unique, among the academic work focused
on the VANETs scope. The GNN evaluation carried out by analytic modeling took into
account the public DARE dataset and the results achieved confirmed the remarks pointed
out by the recent studies. Our model exceeded all the other traditional ML techniques for
intrusion detection and presented a great robustness towards eventual modifications in the
network features. For future works, we intend to improve the study using simulation tools,
such as NS3, SUMO, and Omnet++, but also experiment with novel GNN algorithms by
applying newly reviewed concepts in other works.

References
Ahmed, W. and Elhadef, M. (2019). Dos attacks and countermeasures in vanets. Ad-

vanced Multimedia and Ubiquitous Engineering - Springer, 518:333–341.

Alam, M., Ferreira, J., and Fonseca, J. (2016). Introduction to intelligent transportation
systems. Studies in Systems, Decision and Control - Springer, pages 19250–19276.

Baccari, S., Hadded, M., Ghazzai, H., Touati, H., and Elhadef, M. (2024). Anomaly de-
tection in connected and autonomous vehicles: A survey, analysis, and research chal-
lenges. IEEE Access, 12:19250–19276.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. NIPS 2014 Deep Learning and Rep-
resentation Learning Workshop.



15

Corona, I., Giacinto, G., and Roli, F. (2013). Adversarial attacks against intrusion detec-
tion systems: Taxonomy, solutions and open issues. Information Sciences - Elsevier,
239:201–225.

da Silva, E. S., Pedrini, H., and Santos, A. (2023). Applying graph neural networks to
support decision making on collective intelligent transportation systems. IEEE TRANS-
ACTIONS ON NETWORK AND SERVICE MANAGEMENT.

DARE-dataset (2024). https://github.com/josephkamel/DARE-Dataset.
[Online; accessed Oct 2024].

Franceschi, L., Niepert, M., Pontil, M., and He, X. (2019). Learning discrete structures for
graph neural networks. 36th International Conference on Machine Learning (ICML).

Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., and Saidane, L. A. (2015). Tdma-
based mac protocols for vehicular ad hoc networks: A survey, qualitative analysis, and
open research issues. IEEE Communications Surveys and Tutorials, 17(4):2461–2492.

HAIDAR, F., KAMEL, J., Jemaa, I. B., Kaiser, A., LONC, B., and Urien, P. (2020). Dare:
A reports dataset for global misbehavior authority evaluation in c-its. 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring).

Hidalgo, C., Vaca, M., Nowak, M. P., Frölich, P., Reed, M., Al-Naday, M., Mpatziakas,
A., Protogerou, A., Drosou, A., and Tzovaras, D. (2021). Detection, control and miti-
gation system for secure vehicular communication. Elsevier Inc.

Kriege1, N. M., Johansson, F. D., and Morris1, C. (2020). A survey on graph kernels.
Applied Network Science - Published by Springer, 5.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P.,
Murray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., and den Hof, P. V. (2017). Sys-
tems and control for the future of humanity, research agenda: Current and future roles,
impact and grand challenges. Annual Reviews in Control, 43:1 – 64.

Limbasiya, T., Teng, K. Z., Chattopadhyay, S., and Zhou, J. (2022). A systematic survey
of attack detection and prevention in connected and autonomous vehicles. Vehicular
Communications - Published by Elsevier, 37.

Lu, N., Cheng, N., Zhang, N., Shen, X., and Mark, J. W. (2014). Connected vehicles:
Solutions and challenges. IEEE Internet of Things Journal, 1:289–299.

Masmoudi, M., Ghazzai, H., Frikha, M., and Massoud, Y. (2019). Object detection learn-
ing techniques for autonomous vehicle applications. 2019 IEEE International Confer-
ence on Vehicular Electronics and Safety (ICVES).

McClelland, J. L. and Rumelhart, D. E. (1986). Parallel Distributed Processing, Vol-
ume 2: Explorations in the Microstructure of Cognition: Psychological and Biological
Models. The MIT Press.

MITRA, S., CHAKRABORTY, T., NEUPANE, S., PIPLAI, A., and MITTAL, S. (2024).
Use of graph neural networks in aiding defensive cyber operations. ACM Trans. Priv.
Sec.

Nagarajan, J., Mansourian, P., Shahid, M. A., Arunita, J., Saini, I., Zhang, N., and Knep-
pers, M. (2023). Machine learning based intrusion detection systems for connected



16

autonomous vehicles: A survey. Peer-to-Peer Networking and Applications, 16:2153–
2185.

Pujol-Perich, D., Suárez-Varela, J., Cabellos-Aparicio, A., and Barlet-Ros, P. (2021a).
Unveiling the potential of graph neural networks for robust intrusion detection.
Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Spain.

Pujol-Perich, D., Suárez-Varela, J., Cabellos-Aparicio, A., and Barlet-Ros, P. (2021b).
Unveiling the potential of graph neural networks for robust intrusion detection.
Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Spain.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The
graph neural network model. IEEE Transactions on Neural Networks, 20:61 – 80.

Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine learning
for network intrusion detection. 2010 IEEE Symposium on Security and Privacy.

Wang, J., Zhang, L., Huang, Y., and Zhao, J. (2020). Safety of autonomous vehicles.
Journal of Advanced Transportation.

Wu, L., Lin, H., Gao, Z., Tan, C., and Stan.Z.Li (2023). Self-supervised learning on
graphs: Contrastive, generative, or predictive. IEEE Transactions on Knowledge and
Data Engineering, 35:4216 – 4235.

Xian, X., Wu, T., Ma, X., Qiao, S., Shao, Y., Wang, C., Yuan, L., and Wu, Y. (2022). Gen-
erative graph neural networks for link prediction. arXiv preprint arXiv:2301.00169.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural
networks? 2019 International Conference on Learning Representations (ICLR).

Yuan, H., Yu, H., Gui, S., and Ji, S. (2022). Explainability in graph neural networks: A
taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.


