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Abstract—O problema de classificacdo de séries temporais é
recorrente em diversas areas, como medicina, musica e sismolo-
gia. Uma abordagem recente consiste em transformar séries tem-
porais em grafos, extrair caracteristicas desses grafos e, a partir
delas, realizar a classificacdo. Nesse contexto, uma estratégia
emergente ¢ transformar as séries temporais em um grafo e
depois executar a classificacio a partir dessa representacio
intermediaria. O objetivo geral da pesquisa é realizar uma analise
comparativa e robusta entre diferentes pipelines de classificacio.

Index Terms—Séries Temporais, Grafos, GNN, Classificacao,
Comparacao Experimental

I. INTRODUCAO

Séries temporais sdo sequéncias de dados indexadas tempo-
ralmente, representando a evolu¢do de um fendmeno ao longo
do tempo. Elas ocorrem naturalmente em diversas dreas, como
medicina, financas, climatologia e sismologia. Por exemplo,
um eletrocardiograma (ECG) registra a atividade elétrica do
coracdo em intervalos regulares, enquanto um sismégrafo
monitora oscilagdes sismicas ao longo do tempo. Devido a sua
ubiquidade, compreender e extrair padrdes de séries temporais
€ uma tarefa fundamental em diversas aplicacdes.

Entre os principais problemas associados a esse tipo de
dado, destaca-se a classificacdo de séries temporais, cujo
objetivo € atribuir rétulos predefinidos a sequéncias com
base em sua forma ou dindmica. Diversas abordagens tém
sido propostas para essa tarefa, como métodos baseados em
extracdo diretas de features da série [1], em distancia [2], e
em convolugdes [3].

Recentemente, uma linha de pesquisa emergente tem inves-
tigado a transformacao de séries temporais em grafos [4], com
o objetivo de capturar propriedades estruturais que ndo sio
evidentes diretamente na série original. Nessa abordagem, car-
acteristicas do grafo sdo extraidas e utilizadas como base para
a classificagcdo. A maioria dos trabalhos nessa direcio emprega
Redes Neurais em Grafos (GNNs) para realizar o aprendizado
dessas caracteristicas e a classificacdo subsequente.

O objetivo deste projeto € realizar uma andlise comparativa
entre diferentes estratégias de representacdo de séries tem-
porais como grafos e sua eficicia na tarefa de classificacdo.
Duas abordagens foram usadas neste trabalho, a primeira é
mais simples: transformar as séries em Grafos de Visibilidade
(GV) [5], extrair features globais (como didmetro e nimero
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de arestas) e locais (como grau e métricas de centralidade),
e utilizar essas features como entrada para classificadores
tradicionais de aprendizado de maquina. J4 a segunda envolve
métodos baseados em GNNs e outras técnicas do estado
da arte, especialmente aquelas baseadas em convolucdes. O
objetivo geral é avaliar, de forma sistematica a eficicia de
diferentes abordagens na classificagdo de séries temporais
transformadas em grafos.

Sendo assim, as perguntas de pesquisa que orientam este
trabalho sdo:

1) Qual é o desempenho da abordagem de extracdo de
caracteristicas combinada com classificadores classicos
em diferentes conjuntos de dados?

2) Ha alguma relagdo entre o desempenho dessa abordagem
e o tipo de dado sendo classificado?

3) Quais sao os principais métodos de classificacio de
séries temporais baseados em grafos (incluindo a abor-
dagem de extrag@o de caracteristicas com classificadores
padrdo)?

4) Como esses métodos se comportam em diferentes con-
juntos de dados?

5) Qual é o desempenho dos métodos baseados em grafos
em comparagdo com o estado da arte para classificagdo
de séries temporais?

6) Existem diferencas estatisticas significativas entre os
métodos avaliados?

O relatério apresenta oito segdes: Introdugdo, Trabalhos
Relacionados, Conceitos Bdsicos, Séries Temporais como
Grafos, Metodologia, Discussdo e, por fim, Conclusdes e
Trabalhos Futuros. A Introdugdo contextualiza o problema
da classificacdo de séries temporais e define o objetivo de
comparar abordagens baseadas na transformagdo em grafos
e métodos de estado da arte. A secdo de Trabalhos Rela-
cionados revisa as metodologias de classificacdo, focando
em métodos baseados em caracteristicas, convolugdes e
diferentes representagdes em grafos. Em seguida, Conceitos
Baésicos estabelece as defini¢des formais de séries tempo-
rais, shapelets e detalha as features globais e locais uti-
lizadas para a representagdo dos grafos. A secdo Séries
Temporais como Grafos aprofunda-se nas trés estratégias
de transformacgdo avaliadas: Grafo de Visibilidade (GV),



SimTSC e Time2graph/Time2graph+. A Metodologia descreve
a configuracdo experimental robusta, as bases de dados e o
protocolo de busca de hiperpardmetros e reavaliagdes para os
modelos. Os Resultados apresentam os Fl-scores médios e o
desvio padrdo de todos os modelos, juntamente com a andlise
estatistica de ranking. A Discussdo analisa e interpreta esses
achados, oferecendo recomendagdes de modelos conforme o
tipo de dado. Finalmente, Conclusdes e Trabalhos Futuros
resumem as descobertas, destacando o potencial das GNNs
e listando sugestdes para pesquisas futuras.

II. TRABALHOS RELACIONADOS

H4 diferentes abordagens para tratar o problema de
classificacio de séries temporais. Uma classe de métodos
amplamente utilizada é baseada na extracdo de caracteristicas
(feature-based), que transforma a série original em um vetor
fixo de atributos extraidos por meio de fungdes estatisticas,
transformadas no dominio do tempo ou da frequéncia, ou
outras heuristicas [1], [6]. Estudos recentes demonstram que
essa estratégia pode alcangar resultados competitivos com
técnicas mais complexas [7].

Ainda nesse raciocinio, hd métodos que se concentram em
subsequéncias ou padrdes discriminativos dentro das séries,
como shapelets [8] ou ordens de permutagdo [9], que visam
capturar dados locais representativos e Uteis para a tarefa de
classificacdo. Essas abordagens assumem que determinadas
estruturas temporais curtas sdo suficientes para discriminar
entre classes.

Com o avango das redes neurais profundas, surgiram
solugdes baseadas em redes convolucionais unidimensionais
(1D CNNs), que operam diretamente sobre os sinais tempo-
rais. Essas redes sdo capazes de aprender automaticamente
representacdes latentes relevantes a partir dos dados, dispen-
sando a extragdo manual de caracteristicas. Modelos como
0 ROCKET e suas variantes [3] t€m se destacado por aliar
desempenho competitivo a uma elevada eficiéncia computa-
cional, mesmo em conjuntos de dados extensos.

Apesar de apresentarem desempenho promissor, os métodos
baseados em extra¢do de caracteristicas podem ser sensiveis a
chamada maldi¢do da dimensionalidade [10]. A medida que
o numero de atributos extraidos cresce, o espago de busca se
torna exponencialmente maior, o que dificulta a discriminacio
das classes. Diante desse cenario, torna-se fundamental o
desenvolvimento de estratégias eficazes de extracdo e selecdo
de caracteristicas, de modo a garantir que apenas informagdes
discriminativas e relevantes sejam mantidas no vetor final de
representacao.

Sob esse prisma, uma alternativa promissora € a
identificac@o de estruturas intermedidrias capazes de represen-
tar informagdes relevantes das séries temporais de forma mais
compacta. Especificamente, grafos t€ém se mostrado eficazes
na captura de relagdes de curto e longo alcance presentes
nas séries temporais [4]. Essa representa¢do permite modelar
dependéncias temporais complexas como conexdes estrutu-
radas entre elementos, o que potencialmente facilita a extracao

de padrdes latentes e oferece uma visdo mais organizada da
dindmica temporal dos dados.

Entre as representacdes mais promissoras baseadas em
grafos estdo os Grafos de Transicdo de Padrdes Ordinais
(GTPOs) [11], [12] e os Grafos de Visibilidade (GVs) [5]. Am-
bas as abordagens convertem séries temporais em estruturas
topolégicas que preservam, de maneiras distintas, aspectos
temporais e estruturais dos dados. Os GTPOs modelam as
transicdes entre padrdes de ordem local, capturando a dindmica
da série por meio de variacdes relativas entre elementos
consecutivos. J4 os GVs estabelecem conexdes entre pontos
da série com base em uma relacdo de visibilidade geométrica,
permitindo representar tanto relacdes de curto quanto de longo
alcance. Essas representacdes tém se mostrado eficazes na
caracterizacdo de complexidade, periodicidade e comporta-
mento dinamico de séries temporais em diferentes contextos.

Nesse contexto, Coelho [13] realizou uma analise com-
parativa de diferentes formas de classificar séries temporais
representadas como grafos. O autor avaliou diversas possibili-
dades de construgdo da seguinte pipeline: receber um conjunto
de séries temporais univariadas, transformd-las em grafos,
extrair caracteristicas desses grafos e, por fim, utilizar essas
caracteristicas como entrada para modelos de classificacdo.
O estudo considerou distintas alternativas para cada etapa
da pipeline: transformacdo da série em grafo, extracdo de
caracteristicas e classificacao.

Apesar de abrangente, o trabalho apresenta algumas
limitagdes: ndo houve busca de hiperpardmetros nos modelos,
comprometendo uma avaliacdo justa do desempenho; nao
foram realizadas reavaliagdes sobre o mesmo conjunto de
dados, o que pode gerar viés treino-teste; e apenas um modelo
estado da arte foi utilizado para comparagdo.

Nesse contexto, o objetivo deste projeto é expandir o estudo
de Coelho [13], aumentando a robustez da analise. Para
tanto, o foco € realizar busca de hiperparametros, reavaliacdes
sobre 0 mesmo conjunto de dados, compara¢ao com multiplos
modelos estado da arte e, por fim, incluir a comparacao com
uma nova abordagem baseada na extracio de features de grafos
e classificadores cldssicos.

I1I. CONCEITOS BASICOS

A. Série Temporal

Uma série temporal ¢ um conjunto de medicdes realizadas
ao longo do tempo. Exemplos comuns incluem eletrocardio-
gramas, medicdes de um sismografo e valores financeiros de
uma empresa ao longo do tempo.

Uma série temporal pode ser classificada como multivariada
quando mais de uma varidvel € medida simultaneamente em
cada instante, ou univariada quando apenas uma varidvel é ob-
servada ao longo do tempo. Este trabalho foca exclusivamente
em séries temporais univariadas.

Formalmente, uma série temporal univariada 7" é represen-
tada como T = [(t1,91), (t2,92), -, (tm, Ym)], onde (¢;,y;)
corresponde ao valor da varidvel y observado no instante de
tempo ;.



B. Shapelets

Shapelets sao subsequéncias curtas e continuas extraidas de
séries temporais, concebidas para representar padrdes locais
caracteristicos presentes nos dados. Cada shapelet é definida
como um segmento de comprimento ! < m, onde m corre-
sponde ao nimero total de observagdes da série temporal. A
escolha desse segmento visa capturar uma forma ou estrutura
recorrente que sintetiza propriedades essenciais da dindmica
temporal observada.

De maneira conceitual, uma shapelet pode ser vista como
uma entidade descritiva da morfologia local de uma série,
expressando variagdes especificas em amplitude, tendéncia e
oscilacdo. Ao contrdrio de medidas globais, que resumem
o comportamento integral da série, as shapelets enfatizam
padrdes temporais localizados, permitindo a representagdo de
componentes estruturais intrinsecos ao sinal.

Formalmente, seja uma série temporal univariada T =
[(t17 yl)a (t27 y?)a ) (tTnv ym)]? onde (tia yz) representa o
valor y; observado no instante de tempo ¢;. Uma shapelet S
¢ definida como uma subsequéncia continua de 7',

S =1[(ts,y;) tj+1,Yj+1)s - Ejgi—1, Yj+1-1)]s

com 1 < j <m — [+ 1. Essa subsequéncia preserva a ordem
temporal dos elementos e reflete uma forma especifica da série
original, podendo ser utilizada para caracterizagdo e andlise
estrutural de padrdes temporais.

Em termos conceituais, o estudo de shapelets fundamenta-
se na hipétese de que séries temporais podem ser decompostas
em componentes locais representativos, cujas formas contém
informagdo relevante sobre o comportamento do processo
subjacente.

C. Grafo de atributos

Um grafo de atributos é uma estrutura formada por nés
conectados por arestas, em que cada ndé possui um conjunto
de atributos associados. Esses atributos podem ser valores
numéricos ou categdricos e descrevem propriedades relevantes
dos elementos do grafo. Em tarefas que envolvem GNN,
esses atributos sdo essenciais, pois alimentam os processos de
agregacdo e atualizac@o das representacdes, permitindo que o
modelo combine informagdes estruturais e descritivas.

D. Rede Neurais em Grafos (GNNs)

Redes Neurais em Grafos (GNNs) sao modelos destinados
a aprender representacdes a partir de grafos de atributos. Cada
nd possui um conjunto de caracteristicas que serve como ponto
de partida para a rede. A GNN atualiza essas representacdes
por meio de um processo iterativo no qual cada né combina
suas proprias informag¢des com as caracteristicas dos nds
vizinhos. Esse mecanismo de agregacdo e atualizacdo per-
mite capturar dependéncias locais e, apds multiplas camadas,
padrdes estruturais mais amplos.

Modelos como GraphSAGE e GAT diferem principalmente
na forma de agregacdo, mas compartilham o mesmo principio
central: usar atributos dos nés e a conectividade do grafo para
produzir embeddings informativos. Em cendrios onde séries

temporais sdo transformadas em grafos, as GNNs exploram
simultaneamente a estrutura gerada e os atributos dos nds para
realizar a tarefa de classificagdo.

E. Features de Grafo

Algumas features de grafo foram computadas para servir
como base da representagdo vetorial deles. Essas features
foram divididas em dois grupos: features globais (do grafo
como um todo) e features locais (baseadas em propriedades
dos nds). As features globais escolhidas foram: nimero de
arestas, didmetro, média do caminho mais curto e contagem
de motifs de tamanho 3, 4 e 5. As features locais escolhidas
foram: grau, centralidade de grau (degree centrality), cen-
tralidade de proximidade (closeness centrality), centralidade
de carga (load centrality), centralidade harmoénica (harmonic
centrality), centralidade de intermediacdo (betweenness cen-
trality), PageRank e coeficiente de agrupamento (clustering
coefficient). A seguir, cada uma dessas features serd explicada
em mais detalhes.

1) Nimero de arestas: Sendo o grafo G = (V,E), o
nimero de arestas é dado por |E|. O nimero de nds ndo
foi considerado como feature, pois na transformagdo de série
temporal para grafos de visibilidade, o nimero de nés € igual
ao tamanho da série original. Como, para os conjuntos de
dados utilizados, o comprimento das séries € fixo, todos os
grafos associados a um mesmo dataset possuem O mesmo
nimero de vértices. Dessa forma, essa medida ndo fornece
poder discriminativo adicional entre as amostras.

2) Didmetro: Dado um grafo G = (V, F), a distancia entre
dois nés u,v € V é denotada por d(u,v) e corresponde ao
comprimento do caminho mais curto entre esses dois nés. O
diametro do grafo é definido como a maior dessas distancias,
ou seja:

diam(G) = max d(u,v) (1)
u,veV

Esse valor representa a maior distincia geodésica entre
quaisquer dois nés do grafo e fornece uma medida da sua
extensdo estrutural.

3) Média do Caminho Mais Curto: A média do caminho
mais curto de um grafo G = (V, E), onde |V | = n, é definida
como a média das menores distincias entre todos os pares
distintos de nés do grafo. Formalmente:

> d(s,t) )

1
m=———
n(n h 1) s#LeEV

Em que d(s,t) representa a menor distdncia entre os nds
s e t. Esta métrica fornece uma estimativa da eficiéncia da
conectividade global do grafo.

4) Motifs: Motifs sdo pequenos subgrafos conexos induzi-
dos e ndo isomdrficos. Cada tipo de motif caracteriza um
padrdo estrutural especifico entre os nés que o compdem.
Esses motifs podem ocorrer miltiplas vezes em um grafo, e
a contagem de suas ocorréncias permite capturar propriedades
topolégicas relevantes da estrutura do grafo.



Neste trabalho, todos os motifs com 3 ndés foram con-
tabilizados exaustivamente. No entanto, como a complexi-
dade da contagem cresce exponencialmente com o nimero
de nds, utilizou-se o algoritmo proposto por Wernicke e
Rasche [14] para os motifs com 4 e 5 nds. Esse algoritmo
utiliza amostragem para reduzir o custo computacional e
fornecer uma estimativa eficiente da contagem.

Existem 2 tipos distintos de motifs com 3 nés, 6 tipos com
4 nds e 21 tipos com 5 nds. Assim, a extragdo resultou na
contagem de 29 tipos diferentes de motifs, sendo cada um
deles tratado como uma feature individual.

—————0

Motif 1: Caminho Motif 2: Triangulo

Fig. 1. Motifs ndo isomdrficos com 3 nés em grafos ndo direcionados.

5) Centralidade de grau (degree centrality): A centralidade
de grau € dada pela férmula:
d(v
Cp(v) = AV )

n—1

onde n € o nimero total de nés do grafo. Essa métrica
representa a quantidade de vizinhos de um né normalizada
pelo nimero maximo possivel de vizinhos.

6) Centralidade de proximidade (closeness centrality): A
centralidade de proximidade para um né u € definida como:

n—1
Zv;ﬁu d(UV U)

onde n é o nimero total de nés no grafo e d(v,u) é a
distdncia do caminho mais curto entre os nés v e u. Essa
medida indica o quao préximo o nd u estd de todos os outros
noés no grafo.

7) Centralidade de carga (load centrality): A centralidade
de carga mede a importancia de um né com base na quantidade
de caminhos minimos que passam por ele. Formalmente, para
um nd v, a centralidade de carga é a fracdo de todos os
caminhos minimos entre pares de nds que passam por v. Essa
métrica indica o quanto um né atua como ponto de passagem
na rede.

8) Centralidade de Intermediacdo (betweenness centrality):
A centralidade de intermedia¢do de um né v é definida como
a soma da frag¢@o de todos os caminhos mais curtos entre pares
de nés que passam por v. Formalmente, é dada por:

2

s,teV

Clu) = “)

o(s,tlv)

Cp(v) = o (s, 1)

(&)

onde V é o conjunto de nés, o(s,t) é o nimero total de
caminhos mais curtos entre os nés s e t, e (s, t|v) é o nimero

desses caminhos que passam pelo né v. Note-se que se v €
{s,t}, entdo o(s,t|jv) =0, e se v =t, o(s,t) =1 [15].

9) PageRank: O PageRank é uma medida de centralidade
baseada em um modelo de passeio aleatério, que atribui um
valor a cada né proporcional & importincia dos ndés que
o apontam. Embora originalmente desenvolvido para redes
direcionadas, o PageRank pode ser aplicado em grafos ndo
direcionados, capturando a relevancia estrutural dos nés com
base em sua conectividade.

10) Coeficiente de agrupamento (clustering coefficient):
O coeficiente de agrupamento de um né v mede a tendéncia
dos seus vizinhos em formarem um subgrafo denso, ou seja, a
propor¢do de conexdes existentes entre os vizinhos em relagdo
ao total possivel. Formalmente, é dado por:

Cv) 2 X nimero de arestas entre vizinhos de v
V) =
d(v) x (d(v) — 1)

onde d(v) é o grau do n6 v. Essa métrica captura a presenca
de comunidades locais dentro do grafo.

(6)

IV. SERIES TEMPORAIS COMO GRAFOS
A. Grafo de Visibilidade

A transformagdo de uma série temporal em um Grafo de
Visibilidade Natural (GVN), proposta por Lacasa et al. [5],
permite representar a série como um grafo ndo direcionado
e ndo ponderado, de modo a capturar aspectos topoldgicos
derivados da estrutura temporal dos dados. Existem variacdes
dessa transformacgao, como o Grafo de Visibilidade Horizontal
[16], mas este trabalho se concentrara no GVN. Portanto,
o termo Grafo de Visibilidade (GV) sera utilizado como
sinbnimo de Grafo de Visibilidade Natural (GVN).

A transformacio de série temporal em GV se d4 da seguinte
forma: dada uma série temporal

T = {(t1,11), (t2,92)s -, (tm, YUm) }»

constréi-se o grafo de visibilidade G (V, E), em que cada
ponto (¢;, y;) corresponde a um vértice v; € V, e hd uma aresta
(vq,vp) € E se, e somente se, para todo ponto intermedidrio
(te,ye) com t. € (tq,ts), a seguinte condigdo for satisfeita:

ty —tc
ty — ta

Essa equag@o garante que ndo ha obstrucdo de visibilidade
entre os pontos A(tq,y,) e B(ty, ys) da série. A construgio do
grafo resulta, por definicdo, em uma estrutura conectada, o que
é uma vantagem para a andlise topoldgica. A versdo utilizada
neste trabalho segue a implementacdo otimizada proposta por
Lan et al. [17], com complexidade O(nlogn).

Yo < Yo+ (Ya — W) - (7

B. Similarity-Aware Time-Series Classification

O Similarity-Aware Time-Series Classification (SimTSC)
[18] propde uma reformulacio do problema de classificag@o de
séries temporais por meio de grafos. Em vez de representar
cada série como um grafo individual, o método transforma
cada série temporal em um né de um grafo global, no qual



as arestas representam o grau de similaridade entre as séries.
Dessa forma, a tarefa de classificac@o passa a ser um problema
de node classification, em que o objetivo é predizer o rétulo de
cada n6 (série), e ndo do grafo como um todo. Essa abordagem
busca conciliar duas vertentes tradicionais da classificagdo de
séries temporais: (i) métodos baseados em similaridade (por
exemplo, 1-NN com DTW) e (ii) modelos end-fo-end de deep
learning que aprendem representacdes diretamente dos dados.

Inicialmente, utiliza-se um backbone de aprendizado pro-
fundo, tipicamente uma rede convolucional unidimensional
(1D-CNN) ou uma ResNet, para extrair os embeddings iniciais
de cada série temporal. Em seguida, constrdi-se um grafo de
similaridade a partir das distincias entre as séries, calculadas
com base em uma métrica como o Dynamic Time Warping
(DTW) [19]. As arestas desse grafo podem ser definidas,
por exemplo, conectando cada série as suas k vizinhas mais
semelhantes.

O grafo resultante, juntamente com os embeddings iniciais,
¢ entdo utilizado como entrada para uma GNN, que refina
as representacdes de cada né levando em conta as relagdes
de similaridade. A GNN propaga informacido entre séries
similares e ajusta os embeddings de modo supervisionado,
minimizando uma funcio de perda de entropia cruzada entre
as predicdes e os rotulos reais das séries. Essa integracdo
entre aprendizado profundo e estrutura de similaridade permite
capturar tanto padrdes discriminativos locais quanto relagdes
globais entre séries temporais.

C. Time2graph e Time2graph+

O framework Time2graph, de Cheng et al. [20],
fundamenta-se no conceito de shapelets 11I-B. Primeiramente,
o modelo aprende time-aware shapelets a partir de um con-
junto de subsequéncias candidatas, que serdo utilizados na
construgdo do Shapelet Evolution Graph para capturar a
correlagdo e a evolucdo temporal entre os shapelets. Final-
mente, a representacdo vetorial da série é obtida por meio da
agregacdo dos embeddings gerados na fase anterior.

Segundo os autores, a defini¢do tradicional de shapelets ig-
nora o fato de que subsequéncias podem ter significados difer-
entes em momentos distintos. Por exemplo, baixo consumo
de energia na primavera é normal, mas no verdo € atipico,
pois tende-se a usar mais energia com ar-condicionado, ven-
tiladores etc. Nesse sentido, os autores introduzem o conceito
de time-aware shapelets, que incorporam fatores temporais
locais e globais, permitindo que um mesmo shapelet tenha
interpretacdes diferentes ao longo do tempo. A primeira etapa
do framework consiste, portanto, em aprender os shapelets
adequados para uma determinada série.

A etapa seguinte consiste na constru¢do do Shapelet Evo-
lution Graph, um grafo ponderado G(V, E, W), no qual cada
vértice representa um shapelet aprendido na fase anterior e
o peso de cada aresta indica a probabilidade de transicao
temporal de um shapelet para outro. Esse grafo captura como
os shapelets evoluem ao longo da série.

A etapa final € o aprendizado da representacdo dos shapelets
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e do grafo. Para isso, é utilizado o algoritmo DeepWalk

apresentado por Perozzi et al. [21], que realiza caminhadas
aleatdrias pelo grafo e obtém como saida embeddings rep-
resentativos de cada shapelet (ou nd). Em seguida, cada
subsequéncia da série é associada ao shapelet mais similar,
o embedding correspondente é coletado e a representacio
final da série é construida por meio da agregacdo desses
embeddings.

O Time2graph+ [22] utiliza um framework semelhante ao
Time2graph original, porém com uma modificagdo essencial
na etapa de aprendizado da representacdo dos shapelets. Em
vez de empregar o DeepWalk para obter os embeddings dos
nés do grafo, o modelo adota uma Graph Attention Network
(GAT), que permite aprender representacdes mais expressivas
ao ponderar, de forma adaptativa, a importancia das conexdes
entre shapelets. Dessa forma, a GAT aprende ndo apenas
os vetores de representacio de cada nd, mas também os
coeficientes de atencdo que indicam o grau de relevancia
de cada vizinho no processo de agregacdo de informagdes.
Essa abordagem substitui as caminhadas aleatdrias usadas no
Time2graph original por um mecanismo de atencdo, capaz
de capturar dependéncias temporais e estruturais de ordem
superior entre os shapelets.

V. METODOLOGIA
A. Bases de Dados

Foram utilizadas cinco das dez bases de dados de séries
temporais univariadas analisadas em [13], todas provenientes
do repositério UCR Archive 2018 [23]. A redug@o no niimero
de bases decorreu de limitagcdes de tempo e recursos computa-
cionais, uma vez que os experimentos envolveram miultiplos
modelos, sucessivas reavaliagdes e buscas extensivas de hiper-
parametros, além da necessidade de execucdo em GPU.

As bases selecionadas foram: Earthquakes, ECG200, ECG-
FiveDays, Strawberry e TwoLeadECG. A escolha dessas bases
fundamenta-se em sua diversidade em termos de desempenho
observado nos classificadores em [13], [24], bem como na
variagdo de caracteristicas como comprimento das séries,
nimero de amostras, e dominio dos dados (por exemplo, sinais
fisiolégicos e séries derivadas de imagens).

TABLE I
INFORMAGOES GERAIS SOBRE O CONJUNTO DE DADOS

Dataset Tam. série | N°séries | N° classes Tipo
Earthquakes 512 461 2 SENSOR
ECG200 96 200 2 ECG
ECGFiveDays 136 884 2 ECG
Strawberry 235 983 2 SPECTRO
TwoLeadECG 82 1162 2 ECG

B. Modelos Avaliados

Todos os modelos baseados em séries temporais como
grafos foram adaptados de Coelho [13], exceto o apresentado
na Se¢do V-B1. No estudo de Coelho, é proposta a arquitetura
Graph Neural Alchemist (GNA), composta por quatro médulos
principais:



1) Médulo de Representacio: recebe as séries temporais
como entrada e as converte em representacdes baseadas
em grafos, como os Grafos de Visibilidade (GVs);

2) Médulo de Aprendizado em Grafos: aplica uma ar-
quitetura GraphSAGE com quatro camadas para apren-
der os embeddings dos nds;

3) Camada de Readout: agrega as representacdes dos nds
em um vetor Unico que descreve o grafo como um todo;

4) Médulo de Classificacao: consiste em uma rede Multi-
Layer Perceptron (MLP) que utiliza o vetor obtido na
etapa anterior para realizar a classificagdo da série.

No trabalho de Coelho [13], diferentes variagdes dessa
arquitetura base foram investigadas, explorando mdltiplas for-
mas de conversdo das séries em grafos e distintas estratégias
de inicializacdo dos embeddings dos nds no segundo moédulo.
Nesta pesquisa, optou-se por concentrar a andlise apenas nos
modelos mais promissores, selecionados com base no melhor
desempenho médio nos conjuntos de dados avaliados por
aquele autor. Além disso, também foram usados 3 outros
modelos estado da arte para classificagcdo de séries tempo-
rais: RocketClassifier, ShapeletTransformClassifier e Shapelet-
TransformClassifier.

As subsecdes a seguir descrevem em mais detalhes os
modelos baseados em grafos.

1) Grafo de Visibilidade + Extracdo de Caracteristicas
+ Classificadores (VG-FE): Essa abordagem consiste em
transformar as séries temporais em Grafos de Visibilidade
(GVs), calcular as features definidas em III-E e utiliza-las para
compor uma representagdo vetorial de cada série, empregada
como entrada em classificadores tradicionais de aprendizado
de méaquina.

Apbs a conversdo de todas as séries em GVs, as features
globais do grafo (referentes a estrutura completa) sdo concate-
nadas aos valores maximo, minimo, médio e ao desvio padrio
das features locais, resultando em um vetor de caracteristicas
que sintetiza as propriedades estruturais de cada série. Essas
reprensetacdes sdo normalizadas e, entdo, utilizadas pelos
modelos de classificacdo considerados: Gradient Boosting,
Random Forest, SVC, KNN, Decision Tree e Naive Bayes.

2) Time2graph+: Implementagdo original do Time2graph+
com GAT [22].

3) Time2graph-GNA: GNA utilizando a representacdoo de
grafos de evolucdo de Shapelets do Time2graph.

4) SimTSC-GNA: GNA utilizando estratégia de similari-
dade do SimTSC, adaptada para classificagdo de nds.

5) VG-GNA: GNA com GV utilizando as features locais
de ndés computadas em III-E mais o sinal ¢; do ponto da série
correspondente ao no.

C. Configuracdo Experimental

Todos os modelos escolhidos apresentam diversos hiper-
parametros, que podem impactar o desempenho do algoritmo.
Para fazer uma andlise mais robusta e justa entre os modelos,
foi feita uma busca de hiperpardmetros para cada modelo
em cada dataset. A busca se deu da seguinte forma: para
cada dataset, fez-se uma amostragem estratificada usando

30% das amostras. Em seguida, foi realizada uma busca
por hiperparametros utilizando Randomized Search com 30
iteracdes. Ou seja, foram avaliados 30 conjuntos distintos de
hiperpardmetros para cada modelo e para cada dataset. Cada
conjunto foi treinado e testado por meio de validacdo cruzada
com 5 folds. O conjunto de hiperparametros que obteve a
maior média da métrica F1-score macro no conjunto de teste
da validagdo cruzada foi selecionado como o melhor para
aquele modelo e dataset.

Ap6s definir a escolha 6tima de hiperpardmetros, cada
modelo foi retreinado em 80% dos dados e testado nos 20%
restantes, utilizando esse conjunto de hiperpardmetros 6timos.
Esse processo foi repetido 30 vezes para cada modelo em cada
dataset, com diferentes parti¢cdes de treino e teste, mantendo
sempre a propor¢do 80-20.

VI. RESULTADOS

A. Desempenho Quantitativo

Nas tabelas II e III € mostrado o Fl-score médio e desvio
padrdo no conjunto de teste de todos os modelos considerando
todas as 30 avaliagoes.

Os resultados médios de Fl-score macro e seus desvios
padrdo, computados ao longo das 30 reavaliacdes, mostram
variacdo relevante entre os modelos avaliados. Os modelos
estado da arte (InceptionTime, ROCKET e ShapeletTransform)
apresentam desempenho superior na maior parte dos conjuntos
de dados. Entre os modelos baseados em grafos, o SimTSC-
GNA e o VG-GNA apresentam desempenho consistentemente
mais alto do que as demais variantes.

Os classificadores baseados na extragdo de features de
Grafos de Visibilidade (VG-FE) apresentam desempenho in-
ferior aos modelos estado da arte e as GNNs, mas ainda
produzem resultados competitivos em alguns cendrios, em
especial para dados ECG.

B. Andlise Estatistica

Para a andlise estatistica, empregou-se o teste de Fried-
man [25]-[27], adotando nivel de significancia de 0,05 para
verificar a existéncia de diferencas estatisticamente relevantes
entre os modelos avaliados. Em seguida, aplicou-se o teste
post-hoc de Nemenyi [28], permitindo a comparagdo par a par
dos classificadores e a identificagdo daqueles cuja diferenga
de desempenho € estatisticamente significativa. A partir desse
procedimento, calculou-se a Diferenga Critica (CD), que
determina o valor minimo de separacdo entre os rankings
médios para que dois modelos sejam considerados distintos.
Os resultados foram representados visualmente na Figura 2,
na qual os modelos sdo posicionados em um eixo horizontal
segundo seus rankings médios, sendo conectados por linhas
quando ndo apresentam diferencas estatisticas significativas.

Devido ao nimero limitado de datasets, reconhece-se que o
poder discriminativo dos testes estatisticos é reduzido, o que
restringe a capacidade de identificar diferencas significativas
entre todos os modelos. Ainda assim, o diagrama, aliado as
métricas de Fl-macro, indica que os métodos baseados em
extracdo de caracteristicas tendem a apresentar desempenho



TABLE II
F1-SCORE MEDIO E DESVIO PADRAO DOS MODELOS VG-FE

Dataset/Modelo  DecisionTree ~ GradientBoosting KNN NaiveBayes = RandomForest SvC

ECG200 0.63 = 0.06 0.72 = 0.06 0.68 £ 0.06  0.70 + 0.06 0.75 + 0.06 0.63 + 0.07

ECGFiveDays 0.85 £ 0.02 0.94 + 0.02 092 +£0.02 0.84 £0.03 0.93 £ 0.02 0.95 + 0.02

Earthquakes 0.49 + 0.05 0.50 + 0.05 0.45 +£0.02 040 £ 0.03 0.49 + 0.04 0.53 = 0.05

Strawberry 0.82 £ 0.02 0.89 + 0.02 0.89 £0.03 0.75 £ 0.03 0.90 + 0.03 0.92 + 0.02

TwoLeadECG 0.87 £ 0.02 0.93 £ 0.02 0.89 £0.02 0.81 £0.02 0.92 £ 0.02 0.95 + 0.01

TABLE III
F1-SCORE MEDIO E DESVIO PADRAO DOS MODELOS AVANCADOS

Dataset/Modelo VG-GNA SimTSC-GNA  Time2graph-GNA  Time2graph+ InceptionTimeClassifier =~ RocketClassifier — ShapeletTransformClassifier
ECG200 0.75 £ 0.07 0.88 + 0.05 0.75 + 0.07 0.81 + 0.05 0.87 + 0.05 0.91 + 0.04 0.82 + 0.05
ECGFiveDays 0.98 £ 0.01 1.00 = 0.00 0.99 + 0.03 0.92 + 0.02 1.00 = 0.00 1.00 = 0.00 1.00 = 0.00
Earthquakes 0.55 + 0.05 0.53 = 0.06 0.48 + 0.04 0.49 + 0.05 0.56 + 0.05 0.52 + 0.05 0.45 + 0.01
Strawberry 0.91 + 0.03 0.96 + 0.03 091 £ 0.02 0.89 + 0.02 0.96 + 0.03 0.98 + 0.01 0.98 + 0.01
TwoLeadECG 0.98 + 0.03 1.00 = 0.00 0.99 £ 0.01 0.93 + 0.01 1.00 = 0.00 1.00 = 0.00 1.00 = 0.00

inferior aos demais, enquanto os modelos de estado da arte
demonstram desempenho superior. Observa-se também que o
SimTSC-GNA apresenta rankings médios proximos aos mod-
elos mais avangados, sugerindo competitividade em relagdo a
eles. Entre os métodos baseados em extracdo de caracteristicas,
o SVC parece ser a alternativa mais eficaz, seguido pelo
RandomForest.

VII. DISCUSSAO

Os resultados evidenciam que o desempenho dos modelos
estd diretamente relacionado tanto a natureza da representacao
adotada quanto as caracteristicas intrinsecas dos dados. Em
geral, modelos estado da arte — em especial ROCKET,
InceptionTime e ShapeletTransform — mantém vantagem
consistente devido a sua capacidade de explorar padrdes
morfoldgicos de alta resolugcdo diretamente na série tempo-
ral. Ainda assim, observa-se que abordagens baseadas em
grafos, quando bem estruturadas, conseguem atingir desem-
penho competitivo em uma parcela significativa dos cendrios
avaliados.

Um outro ponto interessante € que a diferenca de desem-
penho entre os modelos e o desvio-padrdo do F1-score parece
ser mais significativa no dataset ECG200, que é o dataset com
menos instancias, enquanto os datasets com mais instancias,
como TwoLeadECG e Strawberry parecem ter um desempenho
parecido independente do modelo. Isso parece sugerir que os
modelos baseados na representacido em grafo podem necessitar
de um conjunto de dados maiores para aprender os padrdes da
séries. Isso faz sentido, pois como esse modelos se baseiam em
uma representagdo intermedidria da série, parte da informacao
pode se perder nessa transformacio e o modelo pode precisar
recuperd-la no treinamento € um conjunto maior de dados
favorece isso. Por outro lado, se o modelo opera diretamente
na série temporal, como é o caso dos modelos estado da arte
escolhidos, um conjunto menor de dados pode ser o suficiente
para que se aprenda os padrdes dos dados.

A abordagem VG-FE apresenta desempenho aceitdvel,
porém insuficiente para competir com os modelos estado da
arte. Apesar disso, o modelo VG-GNA — que utiliza exata-
mente a mesma representagdo de grafo — obtém resultados
substancialmente superiores e, em alguns casos, competitivos
com os melhores modelos avaliados. Esse contraste indica
que as GNNs exploram de forma mais eficaz as estruturas
locais e relagdes topoldgicas do grafo, enquanto o VG-FE
perde informacdo ao reduzir o grafo a estatisticas agregadas,
comprometendo a expressividade da representacao.

Observa-se também uma diferenca consistente de desem-
penho entre os modelos Time2Graph-GNA / Time2Graph+
e as demais GNNs avaliadas. Os resultados indicam que a
transformacdo em grafo realizada pelo Shapelet Evolution
Graph é menos eficaz do que as demais representacdes consid-
eradas. Isso € reforcado pelo fato de que o Time2Graph-GNA
apresentou um ranking médio préximo ao obtido pela abor-
dagem VG-FE com SVC, enquanto o Time2Graph+ chegou
a ser superado por esse mesmo modelo. Esse comportamento
sugere que, mesmo sem GNNs, uma representacdo simples
baseada em grafos de visibilidade pode ser mais informativa
do que o Shapelet Evolution Graph.

Além disso, o Time2Graph-GNA superou sistematicamente
o Time2Graph+. Como a principal diferenca entre eles é o uso
de GraphSAGE no primeiro e GAT no segundo, os resultados
sugerem que o GraphSAGE produz embeddings mais robustos
e representativos para esse tipo de grafo, enquanto a atencio
empregada pelo GAT ndo agrega vantagens nesse cendrio.

A. Recomendagdo de modelos de acordo com o tipo de dado

Tipo de dado: ECG
Modelos recomendados: RocketClassifier, InceptionTime-
Classifier, ShapeletTransformClassifier, SIimTSC-GNA, VG-
GNA, Time2Graph-GNA.
Justificativa: Embora o dataset ECG200 apresente maior
variabilidade de desempenho entre os modelos, as GNNs
exibem performance competitiva nos demais conjuntos (ECG-
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FiveDays e TwoLeadECG), nos quais a diferenca de F1-macro
para o melhor modelo é pequena. Isso é compativel com as
propriedades do sinal ECG: trata-se de uma série altamente
estruturada, com picos, vales e ciclicidade bem definidas.

A representacdo via grafo de visibilidade € adequada para
esse tipo de sinal por trés razdes principais: (i) a periodici-
dade facilita a criacdo de grafos estdveis, conectando eventos
relevantes de forma consistente; (ii) o GV € resistente a ruido
fisiolégico ou instrumental, pois captura relagdes topoldgicas
em vez de valores absolutos; (iii) tanto VG-FE quanto VG-
GNA alcangam desempenho elevado, confirmando que a es-
trutura do ECG € preservada de forma discriminativa no grafo.

Métodos como Time2Graph-GNA e ShapeletTransform-
Classifier também se beneficiam da presenca de padrdes
morfolégicos estaveis, pois facilitam a extracdo de shapelets
bem definidos.

Ja o desempenho superior do SimTSC-GNA € coerente
com o fato de que pequenas variacdes na forma dos ciclos
podem indicar diferencas relevantes, e a combinacdo entre
convolugdes e a métrica de distancia usada para construir as
arestas favorece a discriminacdo dessas variacgoes.

Tipo de dado: SENSOR

Modelos recomendados: InceptionTimeClassifier, VG-GNA.
Justificativa: O dataset Earthquakes contém séries extrema-
mente irregulares, com oscilagdes abruptas tipicas de sinais
sismograficos, o que torna a tarefa de classificagdo sub-
stancialmente dificil. Nenhum modelo atinge desempenho
elevado nesse cendrio. Ainda assim, a VG-GNA aproxima-
se do melhor Fl-macro obtido (0.56), alcangcando 0.55 e
superando o métodos estado da arte como RocketClassifier e
ShapeletTransformClassifier, evidenciando que representagdes
em grafo conseguem capturar, ao menos parcialmente, padrdes
morfolégicos tteis mesmo em dados altamente incertos. Isso
demonstra que abordagens baseadas em grafos podem manter
competitividade mesmo em tarefas adversas.

Tipo de dado: SPECTRO
Modelos recomendados: RocketClassifier, ShapeletTrans-
formClassifier, SImTSC-GNA.
Justificativa: Para dados espectrograficos, as GNNs apresen-
tam desempenho promissor, com destaque para o SimTSC-
GNA, cujo Fl-macro aproxima-se dos modelos estado da arte.
Nesse caso, conjectura-se que a adocdo de DTW na definicao
das arestas contribui significativamente, pois essa métrica

lida bem com variagdes de velocidade temporal, pequenos
deslocamentos no tempo e deformagdes locais — aspectos
comuns em sinais espectrais. Essa robustez explica o bom
desempenho dos modelos baseados em similaridade e reforga
a adequagdo do SIimTSC-GNA para esse tipo de dado.

B. Andlise dos modelos baseados em grafo

1) VG-FE: A abordagem VG-FE ¢ a solugdo mais simples
dentre os métodos avaliados. Nao requer GPU, nao utiliza
redes neurais e possui baixo custo de inferéncia. Seu principal
custo concentra-se na constru¢do do grafo de visibilidade e
na computacdo das features globais e locais, que pode ser
demorada em séries longas. Apesar de sua simplicidade, o de-
sempenho obtido é limitado, refletindo a perda de informacao
decorrente da agregacdo estatistica das propriedades do grafo.
Assim, embora seja uma abordagem leve e ficil de imple-
mentar, ndo € competitiva frente aos demais métodos mais
expressivos.

2) VG-GNA: O modelo VG-GNA utiliza a mesma
representacdo de grafo da abordagem VG-FE, mas com apren-
dizado profundo sobre a estrutura do grafo. Os resultados
mostram desempenho significativamente superior ao VG-FE
e, em alguns casos, proximo ao estado da arte, indicando que
o grafo de visibilidade é uma representacdo estruturalmente
rica quando processado por uma GNN. Entretanto, o método
herda o custo de construgdo do grafo e de extragdo das features
de nds, além de exigir GPU para treinar a GraphSAGE.
Assim, representa um compromisso entre custo computacional
moderado e desempenho competitivo.

3) Time2Graph-GNA e Time2Graph+: Esses modelos de-
pendem do Shapelet Evolution Graph, cujo desempenho esti
fortemente ligado a clareza dos padrdes morfoldgicos pre-
sentes no conjunto de dados. Em dominios como ECG, onde
os padrdes sdo bem definidos e repetitivos, a representacio
tende a capturar transicdes relevantes entre shapelets. No
entanto, no geral, essas abordagens apresentaram desempenho
inferior em compara¢do com outras GNNs. Além disso, a
etapa de extragcdo de shapelets é computacionalmente onerosa,
especialmente sob busca de hiperpardmetros. Entre os dois, o
Time2Graph-GNA superou o Time2Graph+, sugerindo que o
GraphSAGE gera embeddings mais estaveis que a GAT para
esse tipo de grafo.

4) SimTSC-GNA: O SimTSC-GNA foi o modelo baseado
em grafos mais robusto. Seu desempenho foi consistente-
mente competitivo com os métodos estado da arte e, em



diversos casos, muito préximo dos melhores valores obtidos.
A combinagdo entre a construcdo do grafo via DTW e o
uso de convolugdes permite capturar similaridade morfoldgica
de forma precisa. Entretanto, quando o conjunto de dados é
pequeno — como no ECG200 — a sensibilidade do DTW
e a dependéncia da estrutura de vizinhanca podem afetar o
desempenho. Ainda assim, é a solu¢do baseada em grafos com
melhor custo-beneficio estrutural e melhor estabilidade global.

VIII. CONCLUSOES E TRABALHOS FUTUROS

Neste trabalho foi conduzida uma avaliagdo comparativa
rigorosa de treze modelos de classificacdo de séries temporais,
incluindo trés baselines de referéncia e nove modelos basea-
dos em grafos. A metodologia experimental foi estruturada
para garantir estimativas estdveis de desempenho: (i) busca
intensiva de hiperparimetros via randomized search com 30
iteragdes e cross-validation em 5 folds para cada combinacio
modelo—dataset; (ii) retreinamento seguido de teste de cada
modelo 30 vezes sobre cada dataset utilizando o melhor
conjunto de hiperparametros identificado. Esse protocolo reduz
variabilidade, mitiga sobreajuste de configuracdo e fornece
comparagdes estatisticamente fundamentadas.

Os resultados evidenciam que abordagens baseadas em
extracdo de features de Grafos de Visibilidade (VG-FE) apre-
sentam desempenho razodvel, porém ndo competitivo frente
aos modelos estado da arte. Em contraste, métodos que
utilizam grafos como representag@o intermedidria combinados
a GNNs demonstram forte potencial: VG-GNA e SimTSC-
GNA se destacam por alcancarem desempenho préximo —
e, em alguns casos, superior — aos modelos consolidados
da literatura. A andlise estatistica via teste de Friedman
seguida do teste post-hoc de Nemenyi permitiu comparar de
forma robusta o ranking médio dos classificadores, fornecendo
evidéncias quantitativas claras sobre a superioridade relativa
de cada abordagem. Além disso, a andlise qualitativa por tipo
de dado permitiu identificar modelos mais adequados para
cada dominio, oferecendo recomendacdes direcionadas para
aplicacdes futuras.

Apesar da robustez metodoldgica, o estudo apresenta
limitagdes. A principal é a pequena quantidade de datasets
avaliados: cinco conjuntos, ainda que heterogéneos em com-
primento das séries, cardinalidade e natureza do sinal. Uma
avaliacdo em escala maior fortaleceria a generalizacdo das
conclusdes. Ressalta-se que a limitagdo decorre de custos
computacionais elevados — dado o uso intensivo de GPU por
quase todos os modelos considerados, a busca intensiva de
hiperpardmetros e as multiplas reavalicdes para cada conjunto
de dados — e do prazo restrito do projeto.

Para trabalhos futuros, recomenda-se ampliar o conjunto
de datasets avaliados, incluindo dominios mais variados e
benchmarks amplamente utilizados na literatura. Outra linha
promissora é estender a andlise para séries temporais multi-
variadas, ja que este estudo se restringiu ao caso univariado.
Além disso, investigar o uso de representagdes em grafo para
outras tarefas além da classificacio — como deteccdo de
anomalias, early classification e clusterizagdo — pode revelar

propriedades relevantes das abordagens baseadas em grafos e
abrir caminhos para novas aplicacdes.
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