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Abstract—O problema de classificação de séries temporais é
recorrente em diversas áreas, como medicina, música e sismolo-
gia. Uma abordagem recente consiste em transformar séries tem-
porais em grafos, extrair caracterı́sticas desses grafos e, a partir
delas, realizar a classificação. Nesse contexto, uma estratégia
emergente é transformar as séries temporais em um grafo e
depois executar a classificação a partir dessa representação
intermediária. O objetivo geral da pesquisa é realizar uma análise
comparativa e robusta entre diferentes pipelines de classificação.

Index Terms—Séries Temporais, Grafos, GNN, Classificação,
Comparação Experimental

I. INTRODUÇÃO

Séries temporais são sequências de dados indexadas tempo-
ralmente, representando a evolução de um fenômeno ao longo
do tempo. Elas ocorrem naturalmente em diversas áreas, como
medicina, finanças, climatologia e sismologia. Por exemplo,
um eletrocardiograma (ECG) registra a atividade elétrica do
coração em intervalos regulares, enquanto um sismógrafo
monitora oscilações sı́smicas ao longo do tempo. Devido à sua
ubiquidade, compreender e extrair padrões de séries temporais
é uma tarefa fundamental em diversas aplicações.

Entre os principais problemas associados a esse tipo de
dado, destaca-se a classificação de séries temporais, cujo
objetivo é atribuir rótulos predefinidos a sequências com
base em sua forma ou dinâmica. Diversas abordagens têm
sido propostas para essa tarefa, como métodos baseados em
extração diretas de features da série [1], em distância [2], e
em convoluções [3].

Recentemente, uma linha de pesquisa emergente tem inves-
tigado a transformação de séries temporais em grafos [4], com
o objetivo de capturar propriedades estruturais que não são
evidentes diretamente na série original. Nessa abordagem, car-
acterı́sticas do grafo são extraı́das e utilizadas como base para
a classificação. A maioria dos trabalhos nessa direção emprega
Redes Neurais em Grafos (GNNs) para realizar o aprendizado
dessas caracterı́sticas e a classificação subsequente.

O objetivo deste projeto é realizar uma análise comparativa
entre diferentes estratégias de representação de séries tem-
porais como grafos e sua eficácia na tarefa de classificação.
Duas abordagens foram usadas neste trabalho, a primeira é
mais simples: transformar as séries em Grafos de Visibilidade
(GV) [5], extrair features globais (como diâmetro e número

de arestas) e locais (como grau e métricas de centralidade),
e utilizar essas features como entrada para classificadores
tradicionais de aprendizado de máquina. Já a segunda envolve
métodos baseados em GNNs e outras técnicas do estado
da arte, especialmente aquelas baseadas em convoluções. O
objetivo geral é avaliar, de forma sistemática a eficácia de
diferentes abordagens na classificação de séries temporais
transformadas em grafos.

Sendo assim, as perguntas de pesquisa que orientam este
trabalho são:

1) Qual é o desempenho da abordagem de extração de
caracterı́sticas combinada com classificadores clássicos
em diferentes conjuntos de dados?

2) Há alguma relação entre o desempenho dessa abordagem
e o tipo de dado sendo classificado?

3) Quais são os principais métodos de classificação de
séries temporais baseados em grafos (incluindo a abor-
dagem de extração de caracterı́sticas com classificadores
padrão)?

4) Como esses métodos se comportam em diferentes con-
juntos de dados?

5) Qual é o desempenho dos métodos baseados em grafos
em comparação com o estado da arte para classificação
de séries temporais?

6) Existem diferenças estatı́sticas significativas entre os
métodos avaliados?

O relatório apresenta oito seções: Introdução, Trabalhos
Relacionados, Conceitos Básicos, Séries Temporais como
Grafos, Metodologia, Discussão e, por fim, Conclusões e
Trabalhos Futuros. A Introdução contextualiza o problema
da classificação de séries temporais e define o objetivo de
comparar abordagens baseadas na transformação em grafos
e métodos de estado da arte. A seção de Trabalhos Rela-
cionados revisa as metodologias de classificação, focando
em métodos baseados em caracterı́sticas, convoluções e
diferentes representações em grafos. Em seguida, Conceitos
Básicos estabelece as definições formais de séries tempo-
rais, shapelets e detalha as features globais e locais uti-
lizadas para a representação dos grafos. A seção Séries
Temporais como Grafos aprofunda-se nas três estratégias
de transformação avaliadas: Grafo de Visibilidade (GV),



SimTSC e Time2graph/Time2graph+. A Metodologia descreve
a configuração experimental robusta, as bases de dados e o
protocolo de busca de hiperparâmetros e reavaliações para os
modelos. Os Resultados apresentam os F1-scores médios e o
desvio padrão de todos os modelos, juntamente com a análise
estatı́stica de ranking. A Discussão analisa e interpreta esses
achados, oferecendo recomendações de modelos conforme o
tipo de dado. Finalmente, Conclusões e Trabalhos Futuros
resumem as descobertas, destacando o potencial das GNNs
e listando sugestões para pesquisas futuras.

II. TRABALHOS RELACIONADOS

Há diferentes abordagens para tratar o problema de
classificação de séries temporais. Uma classe de métodos
amplamente utilizada é baseada na extração de caracterı́sticas
(feature-based), que transforma a série original em um vetor
fixo de atributos extraı́dos por meio de funções estatı́sticas,
transformadas no domı́nio do tempo ou da frequência, ou
outras heurı́sticas [1], [6]. Estudos recentes demonstram que
essa estratégia pode alcançar resultados competitivos com
técnicas mais complexas [7].

Ainda nesse raciocı́nio, há métodos que se concentram em
subsequências ou padrões discriminativos dentro das séries,
como shapelets [8] ou ordens de permutação [9], que visam
capturar dados locais representativos e úteis para a tarefa de
classificação. Essas abordagens assumem que determinadas
estruturas temporais curtas são suficientes para discriminar
entre classes.

Com o avanço das redes neurais profundas, surgiram
soluções baseadas em redes convolucionais unidimensionais
(1D CNNs), que operam diretamente sobre os sinais tempo-
rais. Essas redes são capazes de aprender automaticamente
representações latentes relevantes a partir dos dados, dispen-
sando a extração manual de caracterı́sticas. Modelos como
o ROCKET e suas variantes [3] têm se destacado por aliar
desempenho competitivo a uma elevada eficiência computa-
cional, mesmo em conjuntos de dados extensos.

Apesar de apresentarem desempenho promissor, os métodos
baseados em extração de caracterı́sticas podem ser sensı́veis à
chamada maldição da dimensionalidade [10]. À medida que
o número de atributos extraı́dos cresce, o espaço de busca se
torna exponencialmente maior, o que dificulta a discriminação
das classes. Diante desse cenário, torna-se fundamental o
desenvolvimento de estratégias eficazes de extração e seleção
de caracterı́sticas, de modo a garantir que apenas informações
discriminativas e relevantes sejam mantidas no vetor final de
representação.

Sob esse prisma, uma alternativa promissora é a
identificação de estruturas intermediárias capazes de represen-
tar informações relevantes das séries temporais de forma mais
compacta. Especificamente, grafos têm se mostrado eficazes
na captura de relações de curto e longo alcance presentes
nas séries temporais [4]. Essa representação permite modelar
dependências temporais complexas como conexões estrutu-
radas entre elementos, o que potencialmente facilita a extração

de padrões latentes e oferece uma visão mais organizada da
dinâmica temporal dos dados.

Entre as representações mais promissoras baseadas em
grafos estão os Grafos de Transição de Padrões Ordinais
(GTPOs) [11], [12] e os Grafos de Visibilidade (GVs) [5]. Am-
bas as abordagens convertem séries temporais em estruturas
topológicas que preservam, de maneiras distintas, aspectos
temporais e estruturais dos dados. Os GTPOs modelam as
transições entre padrões de ordem local, capturando a dinâmica
da série por meio de variações relativas entre elementos
consecutivos. Já os GVs estabelecem conexões entre pontos
da série com base em uma relação de visibilidade geométrica,
permitindo representar tanto relações de curto quanto de longo
alcance. Essas representações têm se mostrado eficazes na
caracterização de complexidade, periodicidade e comporta-
mento dinâmico de séries temporais em diferentes contextos.

Nesse contexto, Coelho [13] realizou uma análise com-
parativa de diferentes formas de classificar séries temporais
representadas como grafos. O autor avaliou diversas possibili-
dades de construção da seguinte pipeline: receber um conjunto
de séries temporais univariadas, transformá-las em grafos,
extrair caracterı́sticas desses grafos e, por fim, utilizar essas
caracterı́sticas como entrada para modelos de classificação.
O estudo considerou distintas alternativas para cada etapa
da pipeline: transformação da série em grafo, extração de
caracterı́sticas e classificação.

Apesar de abrangente, o trabalho apresenta algumas
limitações: não houve busca de hiperparâmetros nos modelos,
comprometendo uma avaliação justa do desempenho; não
foram realizadas reavaliações sobre o mesmo conjunto de
dados, o que pode gerar viés treino-teste; e apenas um modelo
estado da arte foi utilizado para comparação.

Nesse contexto, o objetivo deste projeto é expandir o estudo
de Coelho [13], aumentando a robustez da análise. Para
tanto, o foco é realizar busca de hiperparâmetros, reavaliações
sobre o mesmo conjunto de dados, comparação com múltiplos
modelos estado da arte e, por fim, incluir a comparação com
uma nova abordagem baseada na extração de features de grafos
e classificadores clássicos.

III. CONCEITOS BÁSICOS

A. Série Temporal

Uma série temporal é um conjunto de medições realizadas
ao longo do tempo. Exemplos comuns incluem eletrocardio-
gramas, medições de um sismógrafo e valores financeiros de
uma empresa ao longo do tempo.

Uma série temporal pode ser classificada como multivariada
quando mais de uma variável é medida simultaneamente em
cada instante, ou univariada quando apenas uma variável é ob-
servada ao longo do tempo. Este trabalho foca exclusivamente
em séries temporais univariadas.

Formalmente, uma série temporal univariada T é represen-
tada como T = [(t1, y1), (t2, y2), . . . , (tm, ym)], onde (ti, yi)
corresponde ao valor da variável y observado no instante de
tempo ti.



B. Shapelets

Shapelets são subsequências curtas e contı́nuas extraı́das de
séries temporais, concebidas para representar padrões locais
caracterı́sticos presentes nos dados. Cada shapelet é definida
como um segmento de comprimento l < m, onde m corre-
sponde ao número total de observações da série temporal. A
escolha desse segmento visa capturar uma forma ou estrutura
recorrente que sintetiza propriedades essenciais da dinâmica
temporal observada.

De maneira conceitual, uma shapelet pode ser vista como
uma entidade descritiva da morfologia local de uma série,
expressando variações especı́ficas em amplitude, tendência e
oscilação. Ao contrário de medidas globais, que resumem
o comportamento integral da série, as shapelets enfatizam
padrões temporais localizados, permitindo a representação de
componentes estruturais intrı́nsecos ao sinal.

Formalmente, seja uma série temporal univariada T =
[(t1, y1), (t2, y2), . . . , (tm, ym)], onde (ti, yi) representa o
valor yi observado no instante de tempo ti. Uma shapelet S
é definida como uma subsequência contı́nua de T ,

S = [(tj , yj), (tj+1, yj+1), . . . , (tj+l−1, yj+l−1)],

com 1 ≤ j ≤ m− l+ 1. Essa subsequência preserva a ordem
temporal dos elementos e reflete uma forma especı́fica da série
original, podendo ser utilizada para caracterização e análise
estrutural de padrões temporais.

Em termos conceituais, o estudo de shapelets fundamenta-
se na hipótese de que séries temporais podem ser decompostas
em componentes locais representativos, cujas formas contêm
informação relevante sobre o comportamento do processo
subjacente.

C. Grafo de atributos

Um grafo de atributos é uma estrutura formada por nós
conectados por arestas, em que cada nó possui um conjunto
de atributos associados. Esses atributos podem ser valores
numéricos ou categóricos e descrevem propriedades relevantes
dos elementos do grafo. Em tarefas que envolvem GNN,
esses atributos são essenciais, pois alimentam os processos de
agregação e atualização das representações, permitindo que o
modelo combine informações estruturais e descritivas.

D. Rede Neurais em Grafos (GNNs)

Redes Neurais em Grafos (GNNs) são modelos destinados
a aprender representações a partir de grafos de atributos. Cada
nó possui um conjunto de caracterı́sticas que serve como ponto
de partida para a rede. A GNN atualiza essas representações
por meio de um processo iterativo no qual cada nó combina
suas próprias informações com as caracterı́sticas dos nós
vizinhos. Esse mecanismo de agregação e atualização per-
mite capturar dependências locais e, após múltiplas camadas,
padrões estruturais mais amplos.

Modelos como GraphSAGE e GAT diferem principalmente
na forma de agregação, mas compartilham o mesmo princı́pio
central: usar atributos dos nós e a conectividade do grafo para
produzir embeddings informativos. Em cenários onde séries

temporais são transformadas em grafos, as GNNs exploram
simultaneamente a estrutura gerada e os atributos dos nós para
realizar a tarefa de classificação.

E. Features de Grafo

Algumas features de grafo foram computadas para servir
como base da representação vetorial deles. Essas features
foram divididas em dois grupos: features globais (do grafo
como um todo) e features locais (baseadas em propriedades
dos nós). As features globais escolhidas foram: número de
arestas, diâmetro, média do caminho mais curto e contagem
de motifs de tamanho 3, 4 e 5. As features locais escolhidas
foram: grau, centralidade de grau (degree centrality), cen-
tralidade de proximidade (closeness centrality), centralidade
de carga (load centrality), centralidade harmônica (harmonic
centrality), centralidade de intermediação (betweenness cen-
trality), PageRank e coeficiente de agrupamento (clustering
coefficient). A seguir, cada uma dessas features será explicada
em mais detalhes.

1) Número de arestas: Sendo o grafo G = (V,E), o
número de arestas é dado por |E|. O número de nós não
foi considerado como feature, pois na transformação de série
temporal para grafos de visibilidade, o número de nós é igual
ao tamanho da série original. Como, para os conjuntos de
dados utilizados, o comprimento das séries é fixo, todos os
grafos associados a um mesmo dataset possuem o mesmo
número de vértices. Dessa forma, essa medida não fornece
poder discriminativo adicional entre as amostras.

2) Diâmetro: Dado um grafo G = (V,E), a distância entre
dois nós u, v ∈ V é denotada por d(u, v) e corresponde ao
comprimento do caminho mais curto entre esses dois nós. O
diâmetro do grafo é definido como a maior dessas distâncias,
ou seja:

diam(G) = max
u,v∈V

d(u, v) (1)

Esse valor representa a maior distância geodésica entre
quaisquer dois nós do grafo e fornece uma medida da sua
extensão estrutural.

3) Média do Caminho Mais Curto: A média do caminho
mais curto de um grafo G = (V,E), onde |V | = n, é definida
como a média das menores distâncias entre todos os pares
distintos de nós do grafo. Formalmente:

m =
1

n(n− 1)

∑
s̸=t∈V

d(s, t) (2)

Em que d(s, t) representa a menor distância entre os nós
s e t. Esta métrica fornece uma estimativa da eficiência da
conectividade global do grafo.

4) Motifs: Motifs são pequenos subgrafos conexos induzi-
dos e não isomórficos. Cada tipo de motif caracteriza um
padrão estrutural especı́fico entre os nós que o compõem.
Esses motifs podem ocorrer múltiplas vezes em um grafo, e
a contagem de suas ocorrências permite capturar propriedades
topológicas relevantes da estrutura do grafo.



Neste trabalho, todos os motifs com 3 nós foram con-
tabilizados exaustivamente. No entanto, como a complexi-
dade da contagem cresce exponencialmente com o número
de nós, utilizou-se o algoritmo proposto por Wernicke e
Rasche [14] para os motifs com 4 e 5 nós. Esse algoritmo
utiliza amostragem para reduzir o custo computacional e
fornecer uma estimativa eficiente da contagem.

Existem 2 tipos distintos de motifs com 3 nós, 6 tipos com
4 nós e 21 tipos com 5 nós. Assim, a extração resultou na
contagem de 29 tipos diferentes de motifs, sendo cada um
deles tratado como uma feature individual.

Motif 1: Caminho Motif 2: Triângulo

Fig. 1. Motifs não isomórficos com 3 nós em grafos não direcionados.

5) Centralidade de grau (degree centrality): A centralidade
de grau é dada pela fórmula:

CD(v) =
d(v)

n− 1
(3)

onde n é o número total de nós do grafo. Essa métrica
representa a quantidade de vizinhos de um nó normalizada
pelo número máximo possı́vel de vizinhos.

6) Centralidade de proximidade (closeness centrality): A
centralidade de proximidade para um nó u é definida como:

C(u) =
n− 1∑

v ̸=u d(v, u)
(4)

onde n é o número total de nós no grafo e d(v, u) é a
distância do caminho mais curto entre os nós v e u. Essa
medida indica o quão próximo o nó u está de todos os outros
nós no grafo.

7) Centralidade de carga (load centrality): A centralidade
de carga mede a importância de um nó com base na quantidade
de caminhos mı́nimos que passam por ele. Formalmente, para
um nó v, a centralidade de carga é a fração de todos os
caminhos mı́nimos entre pares de nós que passam por v. Essa
métrica indica o quanto um nó atua como ponto de passagem
na rede.

8) Centralidade de Intermediação (betweenness centrality):
A centralidade de intermediação de um nó v é definida como
a soma da fração de todos os caminhos mais curtos entre pares
de nós que passam por v. Formalmente, é dada por:

CB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

(5)

onde V é o conjunto de nós, σ(s, t) é o número total de
caminhos mais curtos entre os nós s e t, e σ(s, t|v) é o número

desses caminhos que passam pelo nó v. Note-se que se v ∈
{s, t}, então σ(s, t|v) = 0, e se v = t, σ(s, t) = 1 [15].

9) PageRank: O PageRank é uma medida de centralidade
baseada em um modelo de passeio aleatório, que atribui um
valor a cada nó proporcional à importância dos nós que
o apontam. Embora originalmente desenvolvido para redes
direcionadas, o PageRank pode ser aplicado em grafos não
direcionados, capturando a relevância estrutural dos nós com
base em sua conectividade.

10) Coeficiente de agrupamento (clustering coefficient):
O coeficiente de agrupamento de um nó v mede a tendência
dos seus vizinhos em formarem um subgrafo denso, ou seja, a
proporção de conexões existentes entre os vizinhos em relação
ao total possı́vel. Formalmente, é dado por:

C(v) =
2× número de arestas entre vizinhos de v

d(v)× (d(v)− 1)
(6)

onde d(v) é o grau do nó v. Essa métrica captura a presença
de comunidades locais dentro do grafo.

IV. SÉRIES TEMPORAIS COMO GRAFOS

A. Grafo de Visibilidade

A transformação de uma série temporal em um Grafo de
Visibilidade Natural (GVN), proposta por Lacasa et al. [5],
permite representar a série como um grafo não direcionado
e não ponderado, de modo a capturar aspectos topológicos
derivados da estrutura temporal dos dados. Existem variações
dessa transformação, como o Grafo de Visibilidade Horizontal
[16], mas este trabalho se concentrará no GVN. Portanto,
o termo Grafo de Visibilidade (GV) será utilizado como
sinônimo de Grafo de Visibilidade Natural (GVN).

A transformação de série temporal em GV se dá da seguinte
forma: dada uma série temporal

T = {(t1, y1), (t2, y2), . . . , (tm, ym)},

constrói-se o grafo de visibilidade GT (V,E), em que cada
ponto (ti, yi) corresponde a um vértice vi ∈ V , e há uma aresta
(va, vb) ∈ E se, e somente se, para todo ponto intermediário
(tc, yc) com tc ∈ (ta, tb), a seguinte condição for satisfeita:

yc < yb + (ya − yb) ·
tb − tc
tb − ta

(7)

Essa equação garante que não há obstrução de visibilidade
entre os pontos A(ta, ya) e B(tb, yb) da série. A construção do
grafo resulta, por definição, em uma estrutura conectada, o que
é uma vantagem para a análise topológica. A versão utilizada
neste trabalho segue a implementação otimizada proposta por
Lan et al. [17], com complexidade O(n log n).

B. Similarity-Aware Time-Series Classification

O Similarity-Aware Time-Series Classification (SimTSC)
[18] propõe uma reformulação do problema de classificação de
séries temporais por meio de grafos. Em vez de representar
cada série como um grafo individual, o método transforma
cada série temporal em um nó de um grafo global, no qual



as arestas representam o grau de similaridade entre as séries.
Dessa forma, a tarefa de classificação passa a ser um problema
de node classification, em que o objetivo é predizer o rótulo de
cada nó (série), e não do grafo como um todo. Essa abordagem
busca conciliar duas vertentes tradicionais da classificação de
séries temporais: (i) métodos baseados em similaridade (por
exemplo, 1-NN com DTW) e (ii) modelos end-to-end de deep
learning que aprendem representações diretamente dos dados.

Inicialmente, utiliza-se um backbone de aprendizado pro-
fundo, tipicamente uma rede convolucional unidimensional
(1D-CNN) ou uma ResNet, para extrair os embeddings iniciais
de cada série temporal. Em seguida, constrói-se um grafo de
similaridade a partir das distâncias entre as séries, calculadas
com base em uma métrica como o Dynamic Time Warping
(DTW) [19]. As arestas desse grafo podem ser definidas,
por exemplo, conectando cada série às suas k vizinhas mais
semelhantes.

O grafo resultante, juntamente com os embeddings iniciais,
é então utilizado como entrada para uma GNN, que refina
as representações de cada nó levando em conta as relações
de similaridade. A GNN propaga informação entre séries
similares e ajusta os embeddings de modo supervisionado,
minimizando uma função de perda de entropia cruzada entre
as predições e os rótulos reais das séries. Essa integração
entre aprendizado profundo e estrutura de similaridade permite
capturar tanto padrões discriminativos locais quanto relações
globais entre séries temporais.

C. Time2graph e Time2graph+

O framework Time2graph, de Cheng et al. [20],
fundamenta-se no conceito de shapelets III-B. Primeiramente,
o modelo aprende time-aware shapelets a partir de um con-
junto de subsequências candidatas, que serão utilizados na
construção do Shapelet Evolution Graph para capturar a
correlação e a evolução temporal entre os shapelets. Final-
mente, a representação vetorial da série é obtida por meio da
agregação dos embeddings gerados na fase anterior.

Segundo os autores, a definição tradicional de shapelets ig-
nora o fato de que subsequências podem ter significados difer-
entes em momentos distintos. Por exemplo, baixo consumo
de energia na primavera é normal, mas no verão é atı́pico,
pois tende-se a usar mais energia com ar-condicionado, ven-
tiladores etc. Nesse sentido, os autores introduzem o conceito
de time-aware shapelets, que incorporam fatores temporais
locais e globais, permitindo que um mesmo shapelet tenha
interpretações diferentes ao longo do tempo. A primeira etapa
do framework consiste, portanto, em aprender os shapelets
adequados para uma determinada série.

A etapa seguinte consiste na construção do Shapelet Evo-
lution Graph, um grafo ponderado G(V,E,W ), no qual cada
vértice representa um shapelet aprendido na fase anterior e
o peso de cada aresta indica a probabilidade de transição
temporal de um shapelet para outro. Esse grafo captura como
os shapelets evoluem ao longo da série.

A etapa final é o aprendizado da representação dos shapelets
e do grafo. Para isso, é utilizado o algoritmo DeepWalk

apresentado por Perozzi et al. [21], que realiza caminhadas
aleatórias pelo grafo e obtém como saı́da embeddings rep-
resentativos de cada shapelet (ou nó). Em seguida, cada
subsequência da série é associada ao shapelet mais similar,
o embedding correspondente é coletado e a representação
final da série é construı́da por meio da agregação desses
embeddings.

O Time2graph+ [22] utiliza um framework semelhante ao
Time2graph original, porém com uma modificação essencial
na etapa de aprendizado da representação dos shapelets. Em
vez de empregar o DeepWalk para obter os embeddings dos
nós do grafo, o modelo adota uma Graph Attention Network
(GAT), que permite aprender representações mais expressivas
ao ponderar, de forma adaptativa, a importância das conexões
entre shapelets. Dessa forma, a GAT aprende não apenas
os vetores de representação de cada nó, mas também os
coeficientes de atenção que indicam o grau de relevância
de cada vizinho no processo de agregação de informações.
Essa abordagem substitui as caminhadas aleatórias usadas no
Time2graph original por um mecanismo de atenção, capaz
de capturar dependências temporais e estruturais de ordem
superior entre os shapelets.

V. METODOLOGIA

A. Bases de Dados

Foram utilizadas cinco das dez bases de dados de séries
temporais univariadas analisadas em [13], todas provenientes
do repositório UCR Archive 2018 [23]. A redução no número
de bases decorreu de limitações de tempo e recursos computa-
cionais, uma vez que os experimentos envolveram múltiplos
modelos, sucessivas reavaliações e buscas extensivas de hiper-
parâmetros, além da necessidade de execução em GPU.

As bases selecionadas foram: Earthquakes, ECG200, ECG-
FiveDays, Strawberry e TwoLeadECG. A escolha dessas bases
fundamenta-se em sua diversidade em termos de desempenho
observado nos classificadores em [13], [24], bem como na
variação de caracterı́sticas como comprimento das séries,
número de amostras, e domı́nio dos dados (por exemplo, sinais
fisiológicos e séries derivadas de imagens).

TABLE I
INFORMAÇÕES GERAIS SOBRE O CONJUNTO DE DADOS

Dataset Tam. série Nº séries Nº classes Tipo
Earthquakes 512 461 2 SENSOR
ECG200 96 200 2 ECG
ECGFiveDays 136 884 2 ECG
Strawberry 235 983 2 SPECTRO
TwoLeadECG 82 1162 2 ECG

B. Modelos Avaliados

Todos os modelos baseados em séries temporais como
grafos foram adaptados de Coelho [13], exceto o apresentado
na Seção V-B1. No estudo de Coelho, é proposta a arquitetura
Graph Neural Alchemist (GNA), composta por quatro módulos
principais:



1) Módulo de Representação: recebe as séries temporais
como entrada e as converte em representações baseadas
em grafos, como os Grafos de Visibilidade (GVs);

2) Módulo de Aprendizado em Grafos: aplica uma ar-
quitetura GraphSAGE com quatro camadas para apren-
der os embeddings dos nós;

3) Camada de Readout: agrega as representações dos nós
em um vetor único que descreve o grafo como um todo;

4) Módulo de Classificação: consiste em uma rede Multi-
Layer Perceptron (MLP) que utiliza o vetor obtido na
etapa anterior para realizar a classificação da série.

No trabalho de Coelho [13], diferentes variações dessa
arquitetura base foram investigadas, explorando múltiplas for-
mas de conversão das séries em grafos e distintas estratégias
de inicialização dos embeddings dos nós no segundo módulo.
Nesta pesquisa, optou-se por concentrar a análise apenas nos
modelos mais promissores, selecionados com base no melhor
desempenho médio nos conjuntos de dados avaliados por
aquele autor. Além disso, também foram usados 3 outros
modelos estado da arte para classificação de séries tempo-
rais: RocketClassifier, ShapeletTransformClassifier e Shapelet-
TransformClassifier.

As subseções a seguir descrevem em mais detalhes os
modelos baseados em grafos.

1) Grafo de Visibilidade + Extração de Caracterı́sticas
+ Classificadores (VG-FE): Essa abordagem consiste em
transformar as séries temporais em Grafos de Visibilidade
(GVs), calcular as features definidas em III-E e utilizá-las para
compor uma representação vetorial de cada série, empregada
como entrada em classificadores tradicionais de aprendizado
de máquina.

Após a conversão de todas as séries em GVs, as features
globais do grafo (referentes à estrutura completa) são concate-
nadas aos valores máximo, mı́nimo, médio e ao desvio padrão
das features locais, resultando em um vetor de caracterı́sticas
que sintetiza as propriedades estruturais de cada série. Essas
reprensetações são normalizadas e, então, utilizadas pelos
modelos de classificação considerados: Gradient Boosting,
Random Forest, SVC, KNN, Decision Tree e Naive Bayes.

2) Time2graph+: Implementação original do Time2graph+
com GAT [22].

3) Time2graph-GNA: GNA utilizando a representaçãoo de
grafos de evolução de Shapelets do Time2graph.

4) SimTSC-GNA: GNA utilizando estratégia de similari-
dade do SimTSC, adaptada para classificação de nós.

5) VG-GNA: GNA com GV utilizando as features locais
de nós computadas em III-E mais o sinal ti do ponto da série
correspondente ao nó.

C. Configuração Experimental

Todos os modelos escolhidos apresentam diversos hiper-
parâmetros, que podem impactar o desempenho do algoritmo.
Para fazer uma análise mais robusta e justa entre os modelos,
foi feita uma busca de hiperparâmetros para cada modelo
em cada dataset. A busca se deu da seguinte forma: para
cada dataset, fez-se uma amostragem estratificada usando

30% das amostras. Em seguida, foi realizada uma busca
por hiperparâmetros utilizando Randomized Search com 30
iterações. Ou seja, foram avaliados 30 conjuntos distintos de
hiperparâmetros para cada modelo e para cada dataset. Cada
conjunto foi treinado e testado por meio de validação cruzada
com 5 folds. O conjunto de hiperparâmetros que obteve a
maior média da métrica F1-score macro no conjunto de teste
da validação cruzada foi selecionado como o melhor para
aquele modelo e dataset.

Após definir a escolha ótima de hiperparâmetros, cada
modelo foi retreinado em 80% dos dados e testado nos 20%
restantes, utilizando esse conjunto de hiperparâmetros ótimos.
Esse processo foi repetido 30 vezes para cada modelo em cada
dataset, com diferentes partições de treino e teste, mantendo
sempre a proporção 80-20.

VI. RESULTADOS

A. Desempenho Quantitativo

Nas tabelas II e III é mostrado o F1-score médio e desvio
padrão no conjunto de teste de todos os modelos considerando
todas as 30 avaliações.

Os resultados médios de F1-score macro e seus desvios
padrão, computados ao longo das 30 reavaliações, mostram
variação relevante entre os modelos avaliados. Os modelos
estado da arte (InceptionTime, ROCKET e ShapeletTransform)
apresentam desempenho superior na maior parte dos conjuntos
de dados. Entre os modelos baseados em grafos, o SimTSC-
GNA e o VG-GNA apresentam desempenho consistentemente
mais alto do que as demais variantes.

Os classificadores baseados na extração de features de
Grafos de Visibilidade (VG-FE) apresentam desempenho in-
ferior aos modelos estado da arte e às GNNs, mas ainda
produzem resultados competitivos em alguns cenários, em
especial para dados ECG.

B. Análise Estatı́stica

Para a análise estatı́stica, empregou-se o teste de Fried-
man [25]–[27], adotando nı́vel de significância de 0,05 para
verificar a existência de diferenças estatisticamente relevantes
entre os modelos avaliados. Em seguida, aplicou-se o teste
post-hoc de Nemenyi [28], permitindo a comparação par a par
dos classificadores e a identificação daqueles cuja diferença
de desempenho é estatisticamente significativa. A partir desse
procedimento, calculou-se a Diferença Crı́tica (CD), que
determina o valor mı́nimo de separação entre os rankings
médios para que dois modelos sejam considerados distintos.
Os resultados foram representados visualmente na Figura 2,
na qual os modelos são posicionados em um eixo horizontal
segundo seus rankings médios, sendo conectados por linhas
quando não apresentam diferenças estatı́sticas significativas.

Devido ao número limitado de datasets, reconhece-se que o
poder discriminativo dos testes estatı́sticos é reduzido, o que
restringe a capacidade de identificar diferenças significativas
entre todos os modelos. Ainda assim, o diagrama, aliado às
métricas de F1-macro, indica que os métodos baseados em
extração de caracterı́sticas tendem a apresentar desempenho



TABLE II
F1-SCORE MÉDIO E DESVIO PADRÃO DOS MODELOS VG-FE

Dataset/Modelo DecisionTree GradientBoosting KNN NaiveBayes RandomForest SVC

ECG200 0.63 ± 0.06 0.72 ± 0.06 0.68 ± 0.06 0.70 ± 0.06 0.75 ± 0.06 0.63 ± 0.07
ECGFiveDays 0.85 ± 0.02 0.94 ± 0.02 0.92 ± 0.02 0.84 ± 0.03 0.93 ± 0.02 0.95 ± 0.02
Earthquakes 0.49 ± 0.05 0.50 ± 0.05 0.45 ± 0.02 0.40 ± 0.03 0.49 ± 0.04 0.53 ± 0.05
Strawberry 0.82 ± 0.02 0.89 ± 0.02 0.89 ± 0.03 0.75 ± 0.03 0.90 ± 0.03 0.92 ± 0.02
TwoLeadECG 0.87 ± 0.02 0.93 ± 0.02 0.89 ± 0.02 0.81 ± 0.02 0.92 ± 0.02 0.95 ± 0.01

TABLE III
F1-SCORE MÉDIO E DESVIO PADRÃO DOS MODELOS AVANÇADOS

Dataset/Modelo VG-GNA SimTSC-GNA Time2graph-GNA Time2graph+ InceptionTimeClassifier RocketClassifier ShapeletTransformClassifier

ECG200 0.75 ± 0.07 0.88 ± 0.05 0.75 ± 0.07 0.81 ± 0.05 0.87 ± 0.05 0.91 ± 0.04 0.82 ± 0.05
ECGFiveDays 0.98 ± 0.01 1.00 ± 0.00 0.99 ± 0.03 0.92 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Earthquakes 0.55 ± 0.05 0.53 ± 0.06 0.48 ± 0.04 0.49 ± 0.05 0.56 ± 0.05 0.52 ± 0.05 0.45 ± 0.01
Strawberry 0.91 ± 0.03 0.96 ± 0.03 0.91 ± 0.02 0.89 ± 0.02 0.96 ± 0.03 0.98 ± 0.01 0.98 ± 0.01
TwoLeadECG 0.98 ± 0.03 1.00 ± 0.00 0.99 ± 0.01 0.93 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

inferior aos demais, enquanto os modelos de estado da arte
demonstram desempenho superior. Observa-se também que o
SimTSC-GNA apresenta rankings médios próximos aos mod-
elos mais avançados, sugerindo competitividade em relação a
eles. Entre os métodos baseados em extração de caracterı́sticas,
o SVC parece ser a alternativa mais eficaz, seguido pelo
RandomForest.

VII. DISCUSSÃO

Os resultados evidenciam que o desempenho dos modelos
está diretamente relacionado tanto à natureza da representação
adotada quanto às caracterı́sticas intrı́nsecas dos dados. Em
geral, modelos estado da arte — em especial ROCKET,
InceptionTime e ShapeletTransform — mantêm vantagem
consistente devido à sua capacidade de explorar padrões
morfológicos de alta resolução diretamente na série tempo-
ral. Ainda assim, observa-se que abordagens baseadas em
grafos, quando bem estruturadas, conseguem atingir desem-
penho competitivo em uma parcela significativa dos cenários
avaliados.

Um outro ponto interessante é que a diferença de desem-
penho entre os modelos e o desvio-padrão do F1-score parece
ser mais significativa no dataset ECG200, que é o dataset com
menos instâncias, enquanto os datasets com mais instâncias,
como TwoLeadECG e Strawberry parecem ter um desempenho
parecido independente do modelo. Isso parece sugerir que os
modelos baseados na representação em grafo podem necessitar
de um conjunto de dados maiores para aprender os padrões da
séries. Isso faz sentido, pois como esse modelos se baseiam em
uma representação intermediária da série, parte da informação
pode se perder nessa transformação e o modelo pode precisar
recuperá-la no treinamento e um conjunto maior de dados
favorece isso. Por outro lado, se o modelo opera diretamente
na série temporal, como é o caso dos modelos estado da arte
escolhidos, um conjunto menor de dados pode ser o suficiente
para que se aprenda os padrões dos dados.

A abordagem VG-FE apresenta desempenho aceitável,
porém insuficiente para competir com os modelos estado da
arte. Apesar disso, o modelo VG-GNA — que utiliza exata-
mente a mesma representação de grafo — obtém resultados
substancialmente superiores e, em alguns casos, competitivos
com os melhores modelos avaliados. Esse contraste indica
que as GNNs exploram de forma mais eficaz as estruturas
locais e relações topológicas do grafo, enquanto o VG-FE
perde informação ao reduzir o grafo a estatı́sticas agregadas,
comprometendo a expressividade da representação.

Observa-se também uma diferença consistente de desem-
penho entre os modelos Time2Graph-GNA / Time2Graph+
e as demais GNNs avaliadas. Os resultados indicam que a
transformação em grafo realizada pelo Shapelet Evolution
Graph é menos eficaz do que as demais representações consid-
eradas. Isso é reforçado pelo fato de que o Time2Graph-GNA
apresentou um ranking médio próximo ao obtido pela abor-
dagem VG-FE com SVC, enquanto o Time2Graph+ chegou
a ser superado por esse mesmo modelo. Esse comportamento
sugere que, mesmo sem GNNs, uma representação simples
baseada em grafos de visibilidade pode ser mais informativa
do que o Shapelet Evolution Graph.

Além disso, o Time2Graph-GNA superou sistematicamente
o Time2Graph+. Como a principal diferença entre eles é o uso
de GraphSAGE no primeiro e GAT no segundo, os resultados
sugerem que o GraphSAGE produz embeddings mais robustos
e representativos para esse tipo de grafo, enquanto a atenção
empregada pelo GAT não agrega vantagens nesse cenário.

A. Recomendação de modelos de acordo com o tipo de dado

Tipo de dado: ECG
Modelos recomendados: RocketClassifier, InceptionTime-
Classifier, ShapeletTransformClassifier, SimTSC-GNA, VG-
GNA, Time2Graph-GNA.
Justificativa: Embora o dataset ECG200 apresente maior
variabilidade de desempenho entre os modelos, as GNNs
exibem performance competitiva nos demais conjuntos (ECG-



Fig. 2. Diagrama da Diferença Crı́tica - Ranking dos modelos

FiveDays e TwoLeadECG), nos quais a diferença de F1-macro
para o melhor modelo é pequena. Isso é compatı́vel com as
propriedades do sinal ECG: trata-se de uma série altamente
estruturada, com picos, vales e ciclicidade bem definidas.

A representação via grafo de visibilidade é adequada para
esse tipo de sinal por três razões principais: (i) a periodici-
dade facilita a criação de grafos estáveis, conectando eventos
relevantes de forma consistente; (ii) o GV é resistente a ruı́do
fisiológico ou instrumental, pois captura relações topológicas
em vez de valores absolutos; (iii) tanto VG-FE quanto VG-
GNA alcançam desempenho elevado, confirmando que a es-
trutura do ECG é preservada de forma discriminativa no grafo.

Métodos como Time2Graph-GNA e ShapeletTransform-
Classifier também se beneficiam da presença de padrões
morfológicos estáveis, pois facilitam a extração de shapelets
bem definidos.

Já o desempenho superior do SimTSC-GNA é coerente
com o fato de que pequenas variações na forma dos ciclos
podem indicar diferenças relevantes, e a combinação entre
convoluções e a métrica de distância usada para construir as
arestas favorece a discriminação dessas variações.

Tipo de dado: SENSOR
Modelos recomendados: InceptionTimeClassifier, VG-GNA.
Justificativa: O dataset Earthquakes contém séries extrema-
mente irregulares, com oscilações abruptas tı́picas de sinais
sismográficos, o que torna a tarefa de classificação sub-
stancialmente difı́cil. Nenhum modelo atinge desempenho
elevado nesse cenário. Ainda assim, a VG-GNA aproxima-
se do melhor F1-macro obtido (0.56), alcançando 0.55 e
superando o métodos estado da arte como RocketClassifier e
ShapeletTransformClassifier, evidenciando que representações
em grafo conseguem capturar, ao menos parcialmente, padrões
morfológicos úteis mesmo em dados altamente incertos. Isso
demonstra que abordagens baseadas em grafos podem manter
competitividade mesmo em tarefas adversas.

Tipo de dado: SPECTRO
Modelos recomendados: RocketClassifier, ShapeletTrans-
formClassifier, SimTSC-GNA.
Justificativa: Para dados espectrográficos, as GNNs apresen-
tam desempenho promissor, com destaque para o SimTSC-
GNA, cujo F1-macro aproxima-se dos modelos estado da arte.
Nesse caso, conjectura-se que a adoção de DTW na definição
das arestas contribui significativamente, pois essa métrica

lida bem com variações de velocidade temporal, pequenos
deslocamentos no tempo e deformações locais — aspectos
comuns em sinais espectrais. Essa robustez explica o bom
desempenho dos modelos baseados em similaridade e reforça
a adequação do SimTSC-GNA para esse tipo de dado.

B. Análise dos modelos baseados em grafo

1) VG-FE: A abordagem VG-FE é a solução mais simples
dentre os métodos avaliados. Não requer GPU, não utiliza
redes neurais e possui baixo custo de inferência. Seu principal
custo concentra-se na construção do grafo de visibilidade e
na computação das features globais e locais, que pode ser
demorada em séries longas. Apesar de sua simplicidade, o de-
sempenho obtido é limitado, refletindo a perda de informação
decorrente da agregação estatı́stica das propriedades do grafo.
Assim, embora seja uma abordagem leve e fácil de imple-
mentar, não é competitiva frente aos demais métodos mais
expressivos.

2) VG-GNA: O modelo VG-GNA utiliza a mesma
representação de grafo da abordagem VG-FE, mas com apren-
dizado profundo sobre a estrutura do grafo. Os resultados
mostram desempenho significativamente superior ao VG-FE
e, em alguns casos, próximo ao estado da arte, indicando que
o grafo de visibilidade é uma representação estruturalmente
rica quando processado por uma GNN. Entretanto, o método
herda o custo de construção do grafo e de extração das features
de nós, além de exigir GPU para treinar a GraphSAGE.
Assim, representa um compromisso entre custo computacional
moderado e desempenho competitivo.

3) Time2Graph-GNA e Time2Graph+: Esses modelos de-
pendem do Shapelet Evolution Graph, cujo desempenho está
fortemente ligado à clareza dos padrões morfológicos pre-
sentes no conjunto de dados. Em domı́nios como ECG, onde
os padrões são bem definidos e repetitivos, a representação
tende a capturar transições relevantes entre shapelets. No
entanto, no geral, essas abordagens apresentaram desempenho
inferior em comparação com outras GNNs. Além disso, a
etapa de extração de shapelets é computacionalmente onerosa,
especialmente sob busca de hiperparâmetros. Entre os dois, o
Time2Graph-GNA superou o Time2Graph+, sugerindo que o
GraphSAGE gera embeddings mais estáveis que a GAT para
esse tipo de grafo.

4) SimTSC-GNA: O SimTSC-GNA foi o modelo baseado
em grafos mais robusto. Seu desempenho foi consistente-
mente competitivo com os métodos estado da arte e, em



diversos casos, muito próximo dos melhores valores obtidos.
A combinação entre a construção do grafo via DTW e o
uso de convoluções permite capturar similaridade morfológica
de forma precisa. Entretanto, quando o conjunto de dados é
pequeno — como no ECG200 — a sensibilidade do DTW
e a dependência da estrutura de vizinhança podem afetar o
desempenho. Ainda assim, é a solução baseada em grafos com
melhor custo-benefı́cio estrutural e melhor estabilidade global.

VIII. CONCLUSÕES E TRABALHOS FUTUROS

Neste trabalho foi conduzida uma avaliação comparativa
rigorosa de treze modelos de classificação de séries temporais,
incluindo três baselines de referência e nove modelos basea-
dos em grafos. A metodologia experimental foi estruturada
para garantir estimativas estáveis de desempenho: (i) busca
intensiva de hiperparâmetros via randomized search com 30
iterações e cross-validation em 5 folds para cada combinação
modelo–dataset; (ii) retreinamento seguido de teste de cada
modelo 30 vezes sobre cada dataset utilizando o melhor
conjunto de hiperparâmetros identificado. Esse protocolo reduz
variabilidade, mitiga sobreajuste de configuração e fornece
comparações estatisticamente fundamentadas.

Os resultados evidenciam que abordagens baseadas em
extração de features de Grafos de Visibilidade (VG-FE) apre-
sentam desempenho razoável, porém não competitivo frente
aos modelos estado da arte. Em contraste, métodos que
utilizam grafos como representação intermediária combinados
a GNNs demonstram forte potencial: VG-GNA e SimTSC-
GNA se destacam por alcançarem desempenho próximo —
e, em alguns casos, superior — aos modelos consolidados
da literatura. A análise estatı́stica via teste de Friedman
seguida do teste post-hoc de Nemenyi permitiu comparar de
forma robusta o ranking médio dos classificadores, fornecendo
evidências quantitativas claras sobre a superioridade relativa
de cada abordagem. Além disso, a análise qualitativa por tipo
de dado permitiu identificar modelos mais adequados para
cada domı́nio, oferecendo recomendações direcionadas para
aplicações futuras.

Apesar da robustez metodológica, o estudo apresenta
limitações. A principal é a pequena quantidade de datasets
avaliados: cinco conjuntos, ainda que heterogêneos em com-
primento das séries, cardinalidade e natureza do sinal. Uma
avaliação em escala maior fortaleceria a generalização das
conclusões. Ressalta-se que a limitação decorre de custos
computacionais elevados — dado o uso intensivo de GPU por
quase todos os modelos considerados, a busca intensiva de
hiperparâmetros e as múltiplas reavalições para cada conjunto
de dados — e do prazo restrito do projeto.

Para trabalhos futuros, recomenda-se ampliar o conjunto
de datasets avaliados, incluindo domı́nios mais variados e
benchmarks amplamente utilizados na literatura. Outra linha
promissora é estender a análise para séries temporais multi-
variadas, já que este estudo se restringiu ao caso univariado.
Além disso, investigar o uso de representações em grafo para
outras tarefas além da classificação — como detecção de
anomalias, early classification e clusterização — pode revelar

propriedades relevantes das abordagens baseadas em grafos e
abrir caminhos para novas aplicações.
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