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Resumo
Satisfatibilidade Módulo Teorias (SMT) é um campo em crescimento na ciência da
computação e na lógica. Dado uma fórmula matemática, resolver o problema SMT sig-
nifica determinar se a fórmula é satisfatı́vel no contexto de uma teoria especı́fica. Uma
dessas teorias é a aritmética de Presburger (também conhecida como Aritmética Linear
Inteira), que é a teoria de primeira ordem dos inteiros com adição. Um método para definir
a satisfatibilidade de fórmulas nessa teoria envolve o uso de autômatos finitos [10]. Neste
projeto, estendemos o solucionador cvc5 [2] incorporando uma ferramenta baseada em
autômatos para resolver fórmulas de aritmética de Presburger, e comparamos com solu-
cionadores do estado da arte como Lash [42] e Amaya [24]. Nossa ferramenta é baseada
na biblioteca de autômatos Mata [15]. Como trabalho futuro, planejamos também adi-
cionar as etapas de pré-processamento descritas em [24] para a construção de autômatos
mais eficientes.

Palavras chave: Satisfabilidade Módulo Teorias, Aritmética de Presburger,
Autômatos

Abstract
Satisfiability Modulo Theories (SMT) is a growing field in computer science and logic.
Given a mathematical formula, solving the SMT problem means determining whether the
formula is satisfiable within the context of a specific theory. One such theory is Presburger
arithmetic (also known as Linear Integer Arithmetic), which is the first-order theory of
integers with addition. A method for defining the satisfiability of formulae in this theory
involves the use of finite automata [10]. In this project, we extend the cvc5 solver [2]
by incorporating an automata-based tool for solving Presburger arithmetic formulae, and
compare it with state of the art solvers such as Lash [42] and Amaya [24]. Our tool
is based on the Mata automata library [15]. As future work, we plan to also add the
preprocessing steps described in [24] for the construction of more efficient automata.

Keywords: Satisfiability Modulo Theories, Presburger arithmetic, Automata
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1. Introduction
Satisfiability Modulo Theories (SMT) is a growing field of study in computer science and
mathematical logic [3]. In this research area, computer scientists and mathematicians aim
to develop and create algorithms for automated reasoning over formulae defined over a
set of theories. One of such theories is Presburger arithmetic (also know as Linear Integer
Arithmetic, or LIA for short) [23, 35], which is the first-order theory of integers with
addition.

The usage of LIA in SMT solvers has, besides its theorical importance, several
practical applications in fields like databases [17], compiler optimizations [6] and resource
allocation [25]. There are several different approaches to deal with such type of problems
in the context of SMT, such as quantifier elimination, Branch and Bound, etc [28].

There are also approaches for solving LIA problems based on automata theory
[10, 12, 18]. The main idea of this approach is to construct a finite automata from the
original input formula in a way such that the set of words accepted by the automata will
correspond to the set of solutions for the original problem. This construction allows the
usage of several automata theory concepts and algorithms.

As far as the authors are aware of, there are two open source implementations
of such automata-based solvers available for usage, Lash [42] and Amaya [24]. Both of
them will be evaluated and studied for a better understanding of how they work.

As the main part of this monograph, a self written solver using the Mata [15]
automata library as a backend shall be implemented inside the cvc5 environment. This
solver will be heavily inspired by the two aforementioned solvers and will be based on
the algorithms and optimizations presented in [26], which allowed for the construction of
efficient automata and was able to compete with other methods of solving LIA formulae
in solvers like cvc5 [2] and Z3 [16].

1.1. Objectives
This monograph has the objetive of integrating into the cvc5 theorem prover a functional
and performative Presburger arithmetic solver that uses an automata theoretic approach.
Both the tools Lash and Amaya shall be evaluated and studied in depth for a better under-
standing of the concepts around their core implementation.

As a main objective, a self written solver based on the Mata automata library will
be implemented inside the cvc5 environment. The new implementation shall be compared
against Lash and Amaya and also compared against other approaches used to solve LIA
problems inside the cv5 solver.



1.2. Organization

The rest of the work presented in this report is organized in the following manner. Section
2 contains the theoretical background needed to understand the work presented in this
report. Particularly, section 2.1 contains the basics necessary to comprehend the formal
definitions of Presburger arithmetic, while sections 2.2 discuss the topics behind automata
theory and the formulation of a Presburger arithmetic problem using an automata theoretic
approach. Section 2.3 briefly talks about the current state of the art of SMT solvers and
cvc5, the solver used in this project.

Section 3 describes at a high level the architecture of the implemented solver. Sec-
tion 4 exhibits the experimental evaluations made with the new implementation, showing
the comparisons between it and other state of the art solvers in different sets of bench-
marks. Finally, section 5 talks about the main contributions of the work done and where
and how to access them, while also contains the conclusions made during the development
and discussions of future work.

2. Preliminaries

The definitions and formalizations presented in this section were taken from [10, 24, 34,
37, 42]. Some definitions and examples were copied ipsis literis.

2.1. Presburger arithmetic

Presburger arithmetic, also know as Linear Integer Arithmetic (LIA), is the first order
theory of the natural numbers with addition, formally defined as the first order theory of
(Z,+,≤, 0, 1).

Scalar multiplication is allowed since it is just syntatic sugar for repetitive addition
(ax is x + · · · + x a times). Moreover, by using negation, multiplication by −1, or
subtraction from c by 1, any formula of the form AXR c, for R ∈ {=,≤,≥, <,>} can
be represented in Presburger arithmetic.

Mojżesz Presburger showed the theory was decidable in 1927 [35], and several
improvements on his decision procedure were made along the years. However, such ap-
proaches weren’t able to enumerate solutions neither give a sample vector satisfying the
input formula [34]. In 1960, Büchi showed for the first time that finite automata could be
used to encode and manipulate fragments of logic [12]. The application of such an idea
in Presburger arithmetic was only applied in 1996 by Boudet & Comon [10].

In this project, we consider a LIA formula φ over a finite set of integer variables
X using the following grammar:

φatom ::= a⃗ · x⃗ = c | a⃗ · x⃗ ≤ c | a⃗ · x⃗ ≡m c | ⊥

φ ::= φatom | ¬φ | φ ∧ φ | φ ∨ φ | ∃y(φ)

where x⃗ is treated as the set X = {x1, . . . , xn}, a⃗ is a vector of n integer coeffi-
cients (a1, . . . , an) ∈ Zn, c ∈ Z is a constant, m ∈ Z+ is a modulus, and y ∈ X. The
other connectives such as ⊤,→,↔,∀, . . . can be constructed in the standard way.



2.2. Automata Theoretic Formulation

The ideia behind this approach is to create a constructive decision procedure for problems
in Presburger arithmetic.

Given a formula φ(x1, . . . , xn) in the theory, generate a finite automaton Aφ that
accepts the set {(x1, . . . , xn) ∈ Zn : (x1, . . . , xn) |= φ}. In simpler words, the goal is
to construct a finite automaton Aφ that accepts exactly the set of solutions to the original
formula φ.

2.2.1. Finite Automata

A nondeterministic finite automaton is a five-tuple A = (Q,Σ, δ, I,F), where:

• Q is a finite set of states
• Σ is an alphabet
• δ ⊆ Q× Σ×Q is a transition relation
• I ⊆ Q is a set of initial states
• F ⊆ Q is a set of final states

We define a run ofA over a word w ∈ Σ∗ as a sequence of states ρ = q0q1 . . . qn ∈
Qn+1 such that for all 1 ≤ i ≤ n it holds that (qi−1, ai, qi) ∈ δ and q0 ∈ I. The run is
accepting if n ≥ 1 and the last state of the run is belongs to F . The language of A,
denoted as L(A), is the set of words with a accepting run in A.

The automata A is deterministic if |I| ≤ 1 and, for all states q ∈ Q and symbols
a ∈ Σ, if (q, a, p) ∈ δ and (q, a, r) ∈ δ, then p = r. A is complete if |I| ≥ 1 and
for all q ∈ Q and a ∈ Σ, there is at least one state p such that (q, a, p) ∈ δ. A state is
unreachable if there is no run from an initial state to it.

Let q ∈ Q and S ⊆ Q be, respectively, an arbitrary state and a arbitrary subset of
states of the automaton, and σ ∈ Σ an arbitrary symbol of the automaton alphabet. We
define the following functions:

• preδ(q, σ) = {q′ | (q′, σ, q) ∈ δ}
• preδ(S, σ) =

⋃
q∈S preδ(q), σ

• postδ(q, σ) = {q′ | (q, σ, q′) ∈ δ}
• postδ(S, σ) =

⋃
q∈S postδ(q, σ)

2.2.2. Classical Automata Based Decision Procedure for Presburger arithmetic

The formal definitions and proofs of the classical decision procedure for LIA formulae
using automata are well explained in [10, 20, 24, 34, 37, 42]. In this section, we aim
only to present the reader the rough idea of how it works and the information necessary to
understand what was implemented. We encourage the reader to check the cited references
for more details.

Given a formula φ in Presburger arithmetic theory, a finite automaton Aφ is built
that encodes all binary models of φ. This can be done inductively. First, as the base case,



a finite automaton Aφatom is created for each atomic formula φatom in φ. The procedure
constructs an automaton with a finite number of states.

The following algorithms were taken and adapted from [20] and they describe how
an automaton is created for atomic formulae with equalities or inequalities.

Algorithm 1 constructs a non-deterministic deterministic automaton for inequal-
ities, and the lack of determinism actually allows for the encoding of solutions over the
integers and not only over the naturals. We can see an example of an automaton encoding
the solution space of φ : x ≤ 4 over Z in Figure 1, taken from [26].

Algorithm 1 Construction of an NFA enconding solutions of an inequality φ≤ over Z
Input: An inequality a⃗ · x⃗ ≤ c over Z
Output: NFA Aφ≤ = (Q,Σ, δ, I,F) that encodes the solutions to φ≤

1: Q, δ,F ← ∅
2: Σ← {0, 1}|x⃗|
3: I ← {qc}
4: W ← {qc}
5: whileW ≠ ∅ do
6: sk ← pick and remove a state fromW
7: add sk to Q
8: for every σ ∈ Σ do
9: v ← ⌊1

2
(k − a⃗ · σ)⌋

10: if qv /∈ Q then
11: add qv to Q andW
12: end if
13: add the transition (qk, σ, qv) to δ
14: v′ ← 1

2
(k + a⃗ · σ)

15: if v′ ≥ 0 then
16: add qf to Q and F
17: add the transition (qk, σ, qf ) to σ
18: end if
19: end for
20: end while
21: Return (Q,Σ, δ, I,F)

Algorithm 2, on the other hand, constructs a NFA encoding the solutions of an
equality over Z. There is an example in Figure 2 depicting the automaton for the equality
φ : x = 4.

The inductive cases for Boolean connectives are defined in the standard way.
Given two formulae φ1 and φ2 , the conjunction φ1 ∧ φ2 is implemented by taking the
intersection of the corresponding automata, the disjunction φ1 ∨φ2 by taking their union,
and the negation ¬φ by taking the complement of the automaton. Formally, we have:

• A¬φ encodes L(Aφ)

• Aφ1∧φ2 encodes L(Aφ1) ∩ L(Aφ2)

• Aφ1∨φ2 encodes L(Aφ1) ∪ L(Aφ2)
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Figure 1. Automaton Aφ for the inequality φ : x ≤ 4
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Figure 2. Automaton Aφ for the inequality φ : x = 4



Algorithm 2 Construction of an NFA enconding solutions of an inequality φ= over Z
Input: An equality a⃗ · x⃗ = c over Z
Output: NFA Aφ= = (Q,Σ, δ, I,F) that encodes the solutions to φ=

1: Q, δ,F ← ∅
2: Σ← {0, 1}|x⃗|
3: I ← {qc}
4: W ← {qc}
5: whileW ≠ ∅ do
6: sk ← pick and remove a state fromW
7: add sk to Q
8: for every σ ∈ Σ do
9: if k − a⃗ · σ is odd then

10: continue
11: end if
12: v ← 1

2
(k − a⃗ · σ)

13: if qv /∈ Q then
14: add qv to Q andW
15: end if
16: add the transition (qk, σ, qv) to δ
17: v′ ← 1

2
(k + a⃗ · σ)

18: if v′ = 0 then
19: add qf to Q and F
20: add the transition (qk, σ, qf ) to σ
21: end if
22: end for
23: end while
24: Return (Q,Σ, δ, I,F)



For quantifiers, the formalization is quite straightforward. The existential quan-
tification ∃x(φ) can be solved by projecting away the track of variable x from the automa-
ton. Since there is no direct construction for the universal quantification, we can solve the
problem by replacing all of their appearances by the existential one using the equivalence
∀x(φ) ≡ ¬∃x(¬φ).

Projecting away the variable, although, does not solve the entire problem, because
the resulting automaton might not encode all the formula solutions anymore. Suppose,
for example, the model {x = 7 ∧ y = −4}, taken from [24]. The shortest word encoding
for this model would contain 1110 for the x track and 00011 for the y track. If we remove
the x track from the word, we obtain the word 0011, which encodes the model {y = −4}.
However, this is not the shortest encoding of the assignment (the answer would be 001). In
simpler terms, we can say that removing a variable track truncates the automaton alphabet,
and it might not contain all encoding of solutions anymore.

To solve this, we can use Algorithm 3, taken from [26], which augments the au-
tomaton structure to solve the issue.

Algorithm 3 PadClosure
Input: NFA A = (Q,Σ, δ, I, F )
Output: NFA A′ = (Q′,Σ, δ′, I, F ′) accepting all encoding of models

1: δ′ ← δ, W ← ∅
2: qf ← a new state to be added to A such that qf /∈ Q
3: for σ ∈ Σ do
4: S ← ∅, W ← preδ(F, σ)
5: while W ̸= ∅ do
6: q ← pick and remove an element from W
7: add q to S
8: for q′ ∈ preδ(q, σ) do
9: if q′ /∈ S then

10: add q′ to W
11: end if
12: end for
13: end while
14: for q ∈ S do
15: if postδ(q, σ) ∩ F = ∅ then
16: add (q, σ, qf ) to δ′

17: end if
18: end for
19: end for
20: if δ = δ′ then
21: return (Q,Σ, δ, I, F )
22: else
23: return (Q ∪ {qf},Σ, δ′, I, F ∪ {qf})
24: end if



2.3. SMT Solvers and cvc5

SMT solvers are tools built with the goal of solving SMT problems. There are many state
of the art solvers out there, each of them with their respective particularities and design
choices. In this project we are goind to use the cvc5 [2] solver, which is an open-source
automatic theorem prover, written in C++ and released under an open-source software
license. All the code and build instructions can be found in the tool’s GitHub repository.

3. Architecture

As aforementioned, the solver was implemented over the cvc5 environment, making us-
age of several of it’s utilities such as the SMT-LIB [4] language parser. For the current
state of the solver, it’s assumed that the input was preprocessed by the Amaya [26] tool,
which applies a lot of the formula rewriting described in [24]. After preprocessing, the
input formula is fed to the cvc5 binary, which will decide it’s satisfiability.

Our initial implementation can only deal with formulae following the grammar
described in Section 2.1, and cvc5’s internal preprocessing steps didn’t include anything
capable of doing that. One of the proposed future works is to implement inside cvc5 the
whole set of formulae rewriting procedures Amaya is capable of. This way, the imple-
mentation would depend only on the software available in the cvc5 system.

Inside cvc5 the solver is implemented as a preprocessing step. In the step, the au-
tomaton is constructed inductively, in a bottom-up manner, as described in section 2.2.2.
Then, the final automaton goes through an emptiness check. If the language of the au-
tomaton is empty, the formula is unsat, and sat otherwise. The choice of implement-
ing it that way is mainly to make cvc5 leave quantifiers untouched, and let the automaton
solver deal with the entire formula.

Below there is a diagram ilustrating the general process of how the implemented
solver deals with an example Presburger arithmetic formula φ : ∃x(¬(x+y ≤ 3∧y = 2)).

φ φ′ sat
Amaya preprocessing cvc5

Inside the cvc5 procedure step, we have:

https://github.com/cvc5/cvc5


φ′ φ′
AST

Parse φ′

A∃

∃x

¬

∧

φ1 : x+ y ≤ 3 φ2 : y = 2

NFA complement(A∧) → AC

NFA intersection(Aφ1 ,Aφ2 ) → A∧

φ1 → Aφ1 φ2 → Aφ2

NFA projection(AC) → A∃

is L(A∃) empty?

4. Benchmarks

For the evaluation of the implemented tool, two different types of benchmark were uti-
lized, based on the benchmarks presented in [26]. The chosen benchmarks contain prob-
lems in the family of both quantifier-free and quantified Linear Integer Arithmetic. All
datasets are available in the SMT-LIB format, with the exception of the benchmarks used
for the Lash solver, since it could accepted only it’s own input format.

First, our implementation was compared against cvc5’s default linear integer arith-
metic solver in a set of formulae from CAV 2009 datasets. Secondly, we compared our
solver against Amaya, Lash, Z3 and cvc5 on the solving of formulae representing the
Frobenius coin problem [38] with two variables, available at Amaya’s GitHub repository.
The choice of testing the set of automata-based decision procedures in this set of problems
is due to it’s quantifier heavy nature.

The experiments were made in a machine with the following configuration:

Property Details

OS Ubuntu 24.04.1 LTS x86 64

Host MS-7D20 1.0

Kernel 6.8.0-51-generic

CPU 11th Gen Intel i5-11400F (12) @ 4.400GHz

GPU NVIDIA GeForce GTX 1660 SUPER

Memory 16GB

Table 1. System information

https://github.com/MichalHe/amaya/tree/master/benchmarks/formulae/frobenius


4.1. CAV 2009 benchmarks
CAV (International Conference on Computer-Aided Verification) is an academic confer-
ence on the theory and practice of computer-aided verification, one of the most important
ones in the context of SMT solving. The 2009 conference made available a set of bench-
marks for LIA problems that suit very well our needs for benchmarking. It can be found
at this link, where lots of other SMT-COMP benchmarks are hosted.

The dataset contains quantifier free formulae that vary in the size of the coeffi-
cients and in the number of variables. Firstly, we tested our solver, as well other solvers
based on automata, in the formulae varying the size of the coefficients. As the order
of magnitude of the coefficients rises, our solver was not even able to finish before the
process was terminated by the OS because of memory usage. This has a lot of reasons,
one of which being the fact that out implementation doesn’t yet support the optimizations
needed for the construction of automata with less states than needed. We use a bottom up
naive approach, unlike Amaya, who uses a top-down automaton construction that allows
a automaton construction with a considerably smaller number of states created during
computation [27].

We also need to refer to the size of the coefficients, since this causes a huge impact
in the number of states created during construction of the automaton [18]. The decision
procedure based on automata becomes infeasible, even for simple formulae, when such
types of constraints appear. This issue can be confronted by the optimizations described
in [24].

In second place, we also evaluated our solver in the benchmarks where the number
of variables vary. As aforementioned, the whole decision procedure has an exponential
blowup regarding the number of variables in the input formula, so we expected to see
this behavior in the tests, and we did. Our solver couldn’t handle any of the benchmarks
with more than 15 variables, while it was able to solve a big part of the formulae with 10
variables.

The results found during this step of benchmarking actually helped to confirm
that the automata-based approach is not particularly efficient for handling quantifier free
formulae, but instead it’s advantage is in dealing with formulae with a large amount of
quantifiers, as we will see in the next subsection.

4.2. Frobenius coin problem
The Frobenius coin problem is a famous algebra problem named after the German math-
ematician Fernidand Georg Frobenius. Although it is a problem with a notorious theoret-
ical importance [1], it’s fame also comes from a joke involving Chicken McNuggets.

The problem asks what is the largest number n you can get such that n is not the
result of the sum of elements from a set S of coprime numbers, which we will refer as
coins. Such a number is called the Frobenius number of set S. If the amount of coins
is 1, the problem is trivial. If there are two coin denominations, a1 and a2, the Frobenius
number can be found with the formula a1a2 − a1 − a2, found by mathematician James
Joseph Sylvester in 1882. For more than two coins the problem starts to get a little tricky,
and no general formula is known. The general Frobenius coin problem, with an arbitrary
number of coins, is known to be NP-Hard [7]. However, if the number of coins is fixed,
there is a polynomial time algorithm for finding the solution [29].

https://zenodo.org/records/11061097
https://www.youtube.com/watch?v=vNTSugyS038


The problem can be written using the following formula, taken from [26], where
f is the Frobenius number and w⃗ is a vector of setwise coprime numbers:

Frob(f, w⃗) ∆
= ∀n⃗ ∈ N|w⃗| :

(
f ̸= w⃗ · n⃗)∧ (∀f ′ ∈ N :

((∀n⃗′ ∈ N|w⃗|(f ′ ̸= n⃗′ · w⃗))→ f ′ ≤ f
))

As we can see, the problem formulation contains a non-negligible amount of quan-
tifiers, so it is a good way of testing the capacity of our approach for solving quantifier-
heavy formulae. The benchmark used for evaluating the implemented solution with the
state of the art is the same used in [26]. It consists of a set of instances of Frob(n, w⃗) with
two coins with consecutive primes denominations. Figure 3 shows that our solver vastly
outperforms cvc5 and Z3 when solving this set of problems. We’ve established a time
limit of 120 seconds for the solvers.

Figure 3. Frobenius Coin problem benchmark

Against other automata-based decision procedures, we can see, in Figure 4, that
out solver keeps up with Amaya in the first half, but it gets slower as the coin denomina-
tions value increases. The reason is because, as discussed before, the size of the automa-
ton is directly impacted by the values of the coefficients present in the formula. Amaya
implements heuristics and optimizations already thought to mitigate this kind of problem
and our implementation doesn’t yet.

Lash on the other hand starts faster than any other solver but as the coin denom-
inations values starts to increase, it’s behavior begins to be very slow and fraught. The
”ziggy-zaggying” we see is quite curious, but there is no evident explanation for it to hap-
pen specifically with Lash. A further deeper analysis is required to understand the core of
the tool and why it’s behavior is not as predictable as with the other solvers.



Figure 4. Frobenius Coin problem benchmark

5. Conclusion and future work
In this project, we managed to add to the cvc5 environment an automata based approach
for solving Presburger arithmetic formulae. The implementation used the Mata automata
library as a backend for handling automata operations such as the intersection and union,
for example. The fork of cvc5 with the implementation of the new approach can be found
in this GitHub repository, with instructions on how to build the project and where to find
the benchmarks used. Since the time available for the implementation of the project was
short, the main focus was to create a working MVP, which was accomplished, but it’s
performance is not up to the level of Amaya, as shown in 4. For future work, we aim to
study in more depth the core of Amaya’s source code to understand how can we improved
our code to match up with the state of the art solvers in the usage of automata theory for
solving LIA problems.

In addition to the LIA solver implemented, another contribution of this monograph
was the integration of the Mata library in the cvc5 ecossystem. Mata is an automata library
that offers a combination of speed and simplicity. Handling finite automata is a hard task
and Mata can be used to mitigate this problem. It can be used by cvc5 for solving other
types of problems, such as string theory formulae, the same way it was used in Z3-Noodler
[14], for example.

The implemented tool opens a range of possibilities of optimizations, like the
ones described in [24]. The preprocessing passes, for example, shall be implemented in
cvc5 and evaluated in future work, in order to not rely on Amaya’s formulae rewriting
implementation.

https://github.com/lframosferreira/cvc5
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Ondřej Lengál, and Juraj Sı́č. Mata: A fast and simple finite automata library. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 130–151. Springer, 2024.



[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[17] Haoran Ding, Zhaoguo Wang, Yicun Yang, Dexin Zhang, Zhenglin Xu, Haibo Chen,
Ruzica Piskac, and Jinyang Li. Proving query equivalence using linear integer arith-
metic. Proceedings of the ACM on Management of Data, 1(4):1–26, 2023.

[18] Antoine Durand-Gasselin and Peter Habermehl. On the use of non-deterministic
automata for presburger arithmetic. In International Conference on Concurrency
Theory, pages 373–387. Springer, 2010.

[19] Herbert B Enderton. A mathematical introduction to logic. Elsevier, 2001.
[20] Javier Esparza and Michael Blondin. Automata theory: An algorithmic approach.

MIT Press, 2023.
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