
Federal University of Minas Gerais

Computer Science Department
Advised Project in Computer Science I

Final report

Relighting of Human Avatars for
Videos

Scientific Research

Student:
Guilherme Torres <torres@dcc.ufmg.br>

Advisor:
Erickson Rangel do Nascimento <erickson@dcc.ufmg.br>

November 2019

Abstract

Relighting, and by consequence, inverse rendering, have been widely explored classes
of problems in computer vision and computer graphics, but yet the methods used
in recent literature remain divided and, for the most part, particular for a class of
objects [1, 2, 3]. In this work, we explore and research relighting methods specific for
human shapes in a three-dimensional setting, and take further steps to increase the
realism of a motion transfer process, which is to synthesize new videos of people in a
different context where they were initially recorded, taking into account 3D shape,
appearance, and motion constraints. We start by taking a precomputed radiance
transfer approach, which uses spherical harmonics lighting to relight the image of the
human model which is going through a motion transfer process. Three approaches
are used by the authors for relighting the human shape, namely, a two-dimensional
image-domain renderer, a custom OpenGL renderer and a Blender script. Finally,
we conclude that relighting in 3D from inferred spherical harmonics coefficients is a
feasible task and we plan on exploring it further in the next months.

Keywords: computer graphics, computer vision, illumination, relighting, inverse
rendering, motion transfer, precomputed radiance transfer, spherical harmonics.

1

1 Introduction

The general goal of computer vision is to improve the quality of techniques for visual
data manipulation and modelling techniques. Current research in artificial intelli-
gence has been engaged in a quest to not only reach human levels at information
processing and decision making, but to overcome them. In this work, we deal with
examples that are on the boundary between graphics and computer vision, namely
inverse rendering and relighting. All these terms will be strictly defined and
elaborated in this work.

Rendering is to computationally produce an image given a mathematical model of a
scene, namely, the set containing the geometry of the surfaces in a scene, their mate-
rials and a lighting configuration. Materials are functions which describe a surface’s
interaction with the light. All these factors can vary in both their computational
representation and mathematical implications, that is, a geometry, for instance, can
be represented as a polygon mesh, a NURBS surface, voxels, among many other
possibilities.

Given the above definition of rendering, it is intuitive to picture what inverse render-
ing means. Given an image, the goal is to infer data about its geometry, materials,
lighting, or both. Inverse rendering has been traditionally tackled as an optimiza-
tion problem, or with regression. Various examples for many cases were presented
by Marschner [4].

Inverse rendering is necessary for relighting [5]. Relighting is the rendering of an
alternative image with a different lighting configuration given its materials and ge-
ometry. That means, an inverse rendering process with relighting as a goal should
not only find the lighting configuration of the object being relighted, but the mate-
rials so that we can have the object potentially unshaded.

Applications of this work include, but are not limited to, improvement of augmented
reality, image editing, video game applications, forensic science, cinema industry and
special video effects. In addition, the development of studies related to illumination
on computer graphics might lead to a general improvement in the representation
of plausible (realistic) images and potentially open up possibilities for real-time
applications.

Another application of a development in relighting studies is to increase the real-
ism of motion transfer process. Motion transfer is to synthesize new videos of
people in a different context where they were initially recorded, taking into account
3D shape, appearance, and motion constraints. [6]. Motion transfer can be used
transport a human being from one setting to the other in a realistic way, and thus
evidently, making him subjected to another illumination which is not the original
one. Therefore, an optimal relighting would be the ideal way to complement a
motion transfer process.

Relighting methods typically rely on 2D image processing to work on [2, 5]. This
is understandable, because using a per-pixel geometry configuration requires less
computational effort in order to inverse render an image. But since we are working
in a motion transfer pipeline, the best choice is to use the geometry of the model
inferred by the motion transfer process itself, so that we will not need to inverse

2

render it again.

Finally, something that needs to be taken into consideration when relighting an
image is the light model which is going to be used. Bui Tuong Phong’s classic
lighting model has been consistent for years, but learning the light as point lights
with a given position and energy in a continuous space is a painful task for a neural
network, which is the usual technique to inverse render an image, given the state-
of-the-art CNN capabilities [5].

One alternative way to represent light is to use a model of it as a function over
the hemisphere over the differential area segment defined by each fragment of the
surface. This is the essence of spherical harmonics lighting. This lighting model
was used by Sloan et al. [7] for precomputer radiance transfer, a rendering
method where the spherical harmonics lighting function is approximated by a Monte
Carlo method. This is the lighting model we use in this work, because the neural
network responsible for the inverse rendering is able to easily learn a few coefficients
to approximate the spherical harmonics function.

3

Figure 1: Symbols used in BRDF definition. Image from Wang et al. [9].

2 Related works and theory

This section presents some background for the research presented in this work. We
start with a review of lighting models which provides an important context for a
relighting work based off a lighting model.

2.1 Lighting models

Lighting models are models used to determine the light at the surface of a object
in the scene. They are relevant for this work because we need a computational
representation of lighting to work with.

There is a formulation for lighting on computer graphics that physically-based. It
takes into account not only the light incoming from the light sources but also vis-
ibility of a point in the object’s geometry and global illumination. The rendering
equation is as follows [8] The BRDF components are explained at Figure 1.

L(x, ~ωo) = Le(x, ~ωo) +

∫
S

fr(x, ~ωo, ~ωi)L(x
′, ωi)G(x, x

′)V (x, x′)dωi, (1)

being:

1. L(x, ~ωo) the radiance of the ωo ray coming from the x position;

2. Le(x, ~ωo) the light emitted by the surface itself;

3.
∫
S
dωi the sum of all the rays of light being received on the hemisphere defined

by the surface point x;

4. fr(x, ~ωo, ~ωi) the material (also referred to as BRDF, or Bidirectional Re-
flectance Distribution Function) which receives an incoming ray ωi and
reflects it to the ωo direction;

4

5. L(x′, ωi) the light from position x′ arriving from another light emitter along
ωi;

6. G(x, x′) the geometric relation between x and x′. In simpler models, this is
just reduced to a dot product for instance;

7. Finally, V (x, x′) is a binary visibility test, which is 1 in case a ray can travel
from x′ to x without being interrupted or zero otherwise.

This equation involves global illumination factors, and it is an extremely hard task
to simulate this with precision in real time. Fortunately, the lighting models used in
real time rendering are simplifications of this model, and yet they can lead to fairly
realistic results, as we’ll see later on.

2.1.1 Phong’s lighting model

The classical lighting model for computer graphics was presented by Bui Tuong
Phong in his 1975 paper [10], and it’s usually referred to as dot product lighting [8],
because it is essentially a dot product between the light incident ray and the normal
of the surface at a given point. This is the general equation of Phong’s lighting
model:

Iout = Id + Is + Ia =
ρ

π
(~ωi · ~n) + ks(~ωr · ~n)r + kaρa, (2)

where:

1. Iout is the output color;

2. ρ is the albedo of the material;

3. ~ωi is the incident direction of light. This is a unit vector, therefore, the product
between this vector and another unit vector is equal to the cosine of the angle
defined by them. For now on we’ll use this notation specifically to denote the
incident ray of light throughout this document;

4. ~n is the normal of the surface;

5. ks is the specular light coefficient;

6. ~ωr is the reflected ray of light on the surface, which is given by 2(~ωi · ~n)~n− ~ωi

7. r is the roughness of the material;

8. ka is the ambient light coefficient and

9. ρa is the albedo of the ambient light.

A material with ks = 0 is also referred to as a Lambertian material. In this
work, for means of simplification, we’ll assume that the human skin is Lambertian,
therefore, it reflects light equally to all directions.

5

Figure 2: Sphere with bricks texture and a simple Phong BRDF material with a
point light.

Phong’s lighting model is a simple way of representing light interactions, but yet it
has some realistic value, as we can see in Figure 2. That realism can be eventually
incrased by using textures, for instance, bump maps. In Figure 3, there is an example
of the same sphere and lighting configuration with a normal map (a texture with
normal offsets per pixel), which makes it a bit more realistic on sight.

One issue with Phong’s lighting model is that the ambient light is not physically
plausible, because it assumes that the surface material may reflect more light than it
receives. On the other hand, Phong’s BRDF is still widely used due to its simplicity.

2.1.2 Local illumination model

The classic local light model defines two types of light: a point light (which has a
position, a color and maybe an energy modifier), which sends rays of lights equally
to all directions (see Figure 4), and a directional light, which only sends light rays
in one direction (see Figure 5; it can be considered as a point light which is so far
away form the target surface, the rays of light become parallel to each other).

This way of representing the light is typically combined with Phong’s lighting model
to produce images, since it’s pretty much feasible in real time and it provides the
right parameters for the ~ωi in Phong’s equation.

Even though it is a simple model and is rather efficient at simulating light sources
like light bulbs, this model lacks the proper treatment of global illumination. Which
means that there is no way to properly simulate the rays coming out of an emitting
object which has a volume with this type of representation. In addition, we should
keep in mind that we’re doing inverse rendering using a neural network, and as said
previously, trying to estimate the energy, color, amount and position of each light,
also considering the differences between a point light and a directional light in a

6

Figure 3: Same Phong BRDF material with a normal map. Renderer can be found
at https://github.com/torresguilherme/bits-of-opengl

Figure 4: Point light model illustrated. Notice how it sends light equally to all
directions.

7

Figure 5: Directional light model illustrated.

scene is a very tough task.

Fortunately, in the early 2000s a new light model was introduced in the SIGGRAPH
paper by Sloan et al. [7], called the spherical harmonics.

2.1.3 Spherical harmonics

Spherical harmonics have had their application in computer graphics since Sloan et
al. [7] published their paper. The essence of the technique is an approximation of an
ambient light function, which is precomputed. This lighting function is decomposed
in bands, in an analogous way to the Fourier transforms, but in a two-dimensional
space instead of one-dimensional, as we can see in Figure 6.

A harmonic is a decomposition in associated Legendre polynomials, which can be
calculated according to recurrence equations. The equations are defined as:

(l −m)Pm
l = x(2l − 1)Pm

l−1 − (l −m+ 1)Pm
l−2

Pm
m = (−1)m(2m− 1)!!(1− x2)m

2

Pm
m+1 = x(2m+ 1)Pm

m

(3)

where l is the band index, m is an integer modifier that can vary between [0, l]
and n!! is the double-factorial (product of all odd numbers from 1 to n). These
Legendre polynomials are defined between [−1, 1].
The second rule doesn’t depend on other rules, so it’s the ideal one to start the

8

Figure 6: Spherical harmonics approximating a 2D function with an increasing
number of bands. Image from Green’s report on spherical harmonics lighting [8].

process. The third one allows us to lift a band higher and the first allows us to
obtain a new frequency by combining two lower bands.

In order to decompose a two-dimensional function, we use spherical coordinates.
Thus the spherical harmonics are usually represented as:

yml (θ, φ) =

√
2Km

l cos (mφ)Pm
l cos θ, m > 0√

2Km
l sin (−mφ)P−ml cos θ, m < 0

K0
l P

0
l cos θ, m = 0

, (4)

where Km
l is just a normalization factor, to make sure that yml (θ, φ) will be a number

in the interval [−1, 1].

Km
l =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

. (5)

In order to project a lighting function into spherical harmonics, we just need to
multiply them by the yml value given a direction and integrate:

cml =

∫
S

f(~ωi)y
m
l (~ωi)d~ωi. (6)

Analytically integrating over a two-dimensional function is a very costly process and
arguably unfeasible in shader code. So, in order to approximate this function, we
multiply our spherical harmonics functions by random samples ~ωi iterated over
the hemisphere over the differential area of each fragment of the surface,
as a Monte Carlo approximation:

f(~ωi) ≈
n−1∑
l=0

l∑
m=−1

cml y
m
l =

n2∑
i=0

ciyi, (7)

9

given that n is the number of coefficients we have to approximate the function.
We need l2 coefficients because of that (as one can see, n is the square of the
approximation band).

2.2 Precomputed radiance transfer

Precomputed radiance transfer (PRT) is a technique which consists of, as the name
suggests, precomputing how a static object will reflect the incident light, or one
could say, precomputing the colors that will be shown on the screen. This allows us
to simulate more complex models of ambient light then the Phong model, namely a
spherical harmonics lighting (further referred to as SH).

Although the general idea seems simple, in order to generate PRT images, one
needs to be familiar with concepts such as projection into basis functions, empirical
function integration and light transport theory [11]. Here we try to present the
general idea of the algorithm.

Suppose we have a light distribution function f(x, ~ωi). What we need to find in
order to simulate the SH lighting is the projection of the function over SH bands.
The way we’ll do this depends on how the light is represented in our memory. The
most common case is as shown by Slomp et al. [11], where a light probe serves as
an environment map. In this case, this light probe needs to be wrapped around the
object as a texture and it will contain the value of f(x, ~ωi). This is mostly done in
game engines as the light probes are easy for the user to edit for custom ambient
lighting. So, in order to find the light coefficient at a given point, given a random
sample ~ωi, one can approximate equation (6) with a Monte Carlo integration:

ck =
4π

n

l2−1∑
j=0

f(x, ~ωj)yk(~ωj), (8)

in which 4π
n

is the inverse of the probability distribution function of the sampling
over the hemisphere, divided by the n number of samples, and l is the SH band.

The other scenario is what happens in Kanamori and Endo’s method [5], which re-
turns a l2 number of spherical harmonics light coefficients for an image environment.
Therefore, given the coefficient vector L for one color channel, the value of the color
channel can be computed as a dot product, which follows the same Monte Carlo
integration principle;

ck =
4π

n

n−1∑
i=0

l2−1∑
j=0

TijLjyj(~ωi), ∀0 < k < K, (9)

being K the total number of fragments (pixels) in the image, and T is a transport
matrix (a matrix which defines the influence of the geometry in the rendering at a
local point). Equation (9) is very important for our work because it is ultimately
what the rendered is doing in order to compute the light.

10

2.2.1 Transport matrices for a Lambertian material

If our material is Lambertian, that means, if it reflects light equally to all directions
given a point and the hemisphere defined by the area over it, then what happens is
that the transport matrix is nothing short of the dot product between the incoming
light ray and the normal of the surface at a given point. Or, as we can illustrate
mathematically, this is the rendering equation for a Lambertian material:

cLB(x) =
ρx
π

∫
S

L(x, ~ωi)max(~nx · ~ωi, 0)d~ωi. (10)

Notice that this equation is an elaboration of the Phong lighting model (2) without
the specular component. Therefore, the transport matrix can be generalized as:

Tij =
ρx
π

max(~nx · ~ωi, 0). (11)

2.2.2 Transport matrices with shadowing

When adding shadowing to the equation, we just use the visibility test from (1)
V (x′, x). That can be done in a shader using ray casting. This is how the transport
matrix is defined with a visibility test:

Tij =
ρx
π
V (x, ~ωi)max(~nx · ~ωi, 0). (12)

2.2.3 Global illumination

Finally, we add global illumination to the equation. That means that the ambient
light will depend not only on the light given by the environment map, but also the
part that’s being reflected by the objects themselves. Expressing it as an integral,
we can write:

cGI(x) = cLB(x) +
ρx
π

∫
S

LGI(x
′, ~ωi)(1− V (x, ~ωi))max(~nx · ~ωi, 0)d~ωi. (13)

Notice how it depends on the cLB result from the previous sections. Also we have
in this equation the following terms being considered:

1. LGI(x′, ~ωi) is the light emitted by the object that intercepts the vision ray, by
the x′ point;

2. V (x, ~ωi) is the previous section visibility test. Notice how the integral is re-
duced to zero if V = 1.

The algorithm to render the image using the global illumination factor as described
by Green [8] is as follows:

11

1. For each shading point x on the model, calculate the direct lighting transfer
function at that point (cLB(x) for instance).

2. Fire random ray samples from the point and see if they hit a location. If yes,
linearly interpolate the SH of each vertex on the point on the triangle where
the ray has hit.

3. Multiply these values by the dot product between the x point and the ~ωi
sample, and divide by the PDF as it’s done in a Monte Carlo integration.

4. Repeat from x′ to a new x′′ until a set constant B number of bounces has been
hit, or until no energy is transferred from an object to another.

This will give you the LGI(x′, ~ωi) factor we previously covered and will be enough
to simulate a decent global illumination.

Some programs like Blender already have PRT set up in a way that users can use
this global illumination within their works using a Python API. This was done by
Lv et al. [12] in order to generate random human datasets from computer vision
tasks, for instance.

2.3 Relighting-focused inverse rendering

There is a niche of inverse rendering methods that focus on relighting. For instance,
Nestmeyer et al. [1] recently developed a method that works specifically for human
faces, decomposing the image into structures. Sun et al. [3] trained a neural network
in order to decode an environment map and relight also a human face. Ren et al. [2]
tackled the problem with a more complete inverse rendering, for inanimate objects
for the most part, decomposing the scene into light and transport matrices per pixel.

One notable phenomenon in inverse rendering, considering the works that were
already cited here, is that most approaches are ad-hoc for one class of objects, in
these cases, inanimate objects, or human faces.

Despite the fact that none of the methods cited above works with full-body images
of human beings, Kanamori and Endo [5] made a convolutional neural network that
is able to learn spherical harmonics coefficients and transport matrices per pixel.
This approach is focused in relighting human avatars, however, this is made in the
two-dimensional image domain and only for individual images, which generates in-
consistency (unnatural variation in the lighting) when applied to consecutive frames
of a video.

Finally, it is worth mentioning that some methods work purely on the image domain,
without inferring any geometry. Intrinsic images is one of them. An intrinsic
image decomposition is a separation or the input image I into an R reflectance (or
albedo) image and an S grey-scale shading image, in such a way that R ⊗ S = I
where ⊗ is the Hadamard product (element-wise matrix multiplication). Li and
Snavely [13] recently developed a method which learns intrinsic images using neural
networks. Similarly, Tsai et al. [14] presented an image harmonization method
which slightly changes the color of the target given the inferred environment map
from the image.

12

3 Methodology

3.1 Relighting in the two-dimensional image domain

The first method used to relight the human for a video was to use an approach
inspired by the frame-by-frame approach from Kanamori and Endo [5]. Given the
image width w, and the height h, their network offers a method for inferring the
L9×3 light map from a scene as 9 SH coefficients, an albedo (unshaded material)
Aw×h×3 map and per-pixel transport matrix coefficients Tw×h×9, in such a way that
the relighted image R = T × L× A.
This method was used in 2D relighting, and it was observed that the ambient light
estimation achieved good results for human shapes, but the fact that the transport
matrix is also inferred from the network means that, for a motion transfer pipeline,
we would need to inverse-render a human shape that is already inverse rendered.
Since we have that human geometry as an SMPL shape [15], we can render with
"ground-truth" geometry instead of estimating it again.

3.2 Relighting in 3D with a custom renderer

A custom PRT renderer with SH lighting was built with OpenGL 3.3. The light
matrices used were from Kanamori’s inverse rendering method. The transport ma-
trices were calculated according to the surface normals in the given fragment points
and their SH projections, using a Monte Carlo integration, as described in section
2. The materials were assumed to be Lambertian and uniform at all points.

This approach, although it presented a proof of concept, is hard to integrate with
the existing systems and does not include global illumination yet, which requires a
new approach.

3.3 Relighting in 3D with Blender

Blender is a graphics editing and rendering software that can do precomputed radi-
ance transfer with a custom OSL (Open Shading Language) script, including global
illumination. In order to send the custom light, we’ll use the same light matrices,
and for sending the human shape with the right texture, we can read an SMPL
model from the disk.

Since the SMPL was already loaded in a previous inverse rendering method, and
we’re using Python, we can save the parameters as a Pickle binary and load them
in our script.

The script used to interface with Blender’s Python API was based off ReFRESH, a
dataset generator by Lv et al. [12].

13

3.4 Light smoothening process

We can also do a smoothening process to assure that the light is consistent during
time, since our focus is working with videos. This process can be done with a
polynomial regression over the light parameters, but there are better ways to do
regression between points, such as Hermite bases.

Once we are done with the regression, we can use an error parameter ε as the
maximum euclidean distance from the regression in order to classify point that
bypass this parameter as outliers. The outliers can then be dealt with individually,
with a correction. This correction can change the light so that it fits on the regression
line.

14

Figure 7: Kanamori and Endo’s relighting with images from the Bruno Mars music
video.

4 Preliminary results

Here we present the results we’ve got to the date. These results were obtained used
non-real time rendering for all images and for all the cases, the scene which was
inverse rendered were frames from Bruno Mars’ music video "That’s What I Like",
which has a very particular light variation. The human model used for the motion
transfer process and being relighted is a PhD student from our institution.

4.1 Relighting in 2D

For 2D the lighting estimation and operations on the image domain were done as
described above. The multiplication operation was done in CPU and generated the
results compiled in Figure 6.

4.2 Relighting in 3D with custom renderer

The custom renderer served as a proof of concept for our work. With it, the spherical
harmonics lighting in 3D taking into account only the 9 SH coefficients for the light
was proven to be possible.

Indeed, the custom renderer was able to simulate the color of the light and the
rotations successfully, for a Utah teapot model.

Monte Carlo integration for PRT was done in the GPU, in a GLSL program. Results
were compiled in Figure 7, for lights from Kanamori and Endo’s training dataset.
The renderer itself can be found at https://github.com/torresguilherme/spherical-
harmonics-demo.

15

Figure 8: Custom renderer using the inferred light to render an Utah teapot.

Figure 9: Outputs from ReFRESH’s render_bodies.py Blender script, modified to
render only one human being at a given position.

4.3 Relighting with Blender

The relighting with Blender was done based on a script from ReFRESH [12]. The
integration of the actual SMPL model with the rendering pipeline and the textures
of the human model is yet to be done, but the light coefficients have been transferred
successfully. Here we also use the lights from Kanamori and Endo’s training dataset.
The results we have to this date are random human textures and SMPL models in
poses with the given lighting, as we see examples in Figures 8.

16

5 Conclusion and next steps

While arguably there are a few steps to be taken on our method, the results which
were obtained to the present date have shown to be promising. Is it pretty clear that
we can use a neural network for inverse rendering in order to obtain SH coefficients
to do relighting, and it is also arguably true that relighting in the 3D domain with
ground-truth geometry is not only possible, as shown with our 3D custom renderer,
but it is the best path to be chosen in our situation.

The results in general, though they have not been compared other relighting meth-
ods on a quantitative evaluation, probably the most important baseline for our work
currently is the 2D relighting from Kanamori and Endo, and the qualitative evalu-
ation would be the most important regarding this role, given that we are trying to
make a video plausible regarding human judgment.

Aside from that, the results we have produced, in general, indicate that the work is
in constant development and that it’s clear that the proposal is feasible under our
computational and time constraints.

For the next steps, the first one is to develop the Blender interface code to make
room for the actual human model used in motion transfer. That will be done by
importing the SMPL parameters for the body shape, joints, positions and rotations
of joints and the given inferred texture of our human model.

Furthermore, we can mention the possibility of being able to move the camera,
animating its pose during the video rendering. Once the Blender interface is done,
doing this will be rather straightforward.

In addition, the light smoothening is yet to be done, and there are several possible
approaches for it, as it was mentioned earlier. That will be important for the making
the video light incident on the human body more consistent.

The rest of the work will be concluded and submitted in the following six months.

17

References
[1] Thomas Nestmeyer, Iain Matthews, Jean-François Lalonde, and Andreas M.

Lehrmann. Structural decompositions for end-to-end relighting. 2019.

[2] Peiran Ren, Yue Dong, Stephen Lin, Xin Tong, and Baining Guo. Image based
relighting using neural networks. 2019.

[3] Tiancheng Sun, Jonathan T. Barron, Yun-Ta Tsai, Zexiang Xu, Xueming Yu,
Graham Fyffe, Christoph Rhemann, Jay Busch, Paul Debevec, and Ravi Ra-
mamoorthi. Single image portrait relighting. ACM Trans. Graph., 38, 4(79),
2019.

[4] Stephen Robert Marschner. Inverse Rendering for Computer Graphics. PhD
thesis, Cornell University, 1998.

[5] Yoshihiro Kanamori and Yuki Endo. Relighting humans: Occlusion-aware in-
verse rendering for full-body human images. ACM Trans. Graph., 37, 6(270),
2018.

[6] Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, and Shenghua Gao. Liq-
uid warping gan: A unified framework for human motion imitation, appearance
transfer and novel view synthesis. ICCV, 2019.

[7] Peter-Pike J. Sloan, Jan Kautz, and John Snyder. Precomputed radiance trans-
fer for real-time rendering in dynamic, low-frequency lighting environments.
ACM Trans. Graph., 21, 3:527–536, 2002.

[8] Robin Green. Spherical harmonic lighting: The gritty details, 2003. Sony
Computer Entertainment America.

[9] Jiaping Wang, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo. Mod-
eling anisotropic surface reflectance with example-based microfacet synthesis.
ACM Trans. Graph., 27, 08 2008.

[10] Bui Tuong Phong. Illumination for computer generated pictures. Communica-
tions of ACM 18, 6:311–317, 1975.

[11] Marcos Paulo Berteli Slomp, Manuel M. Oliveira, and Diego Inácio Patrício. A
gentle introduction to precomputed radiance transfer. RITA, 13(2), 2006.

[12] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, James Rehg, and Jan Kautz.
Learning rigidity in dynamic scenes with a moving camera for 3d motion field
estimation. ECCV, 2018.

[13] Zhengqi Li and Noah Snavely. Learning intrinsic image decomposition from
watching the world. CVPR, 2018.

[14] Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, and Ming-
Hsuan Yang. Deep image harmonization. 2017.

[15] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, October 2015.

18

	Introduction
	Related works and theory
	Lighting models
	Phong's lighting model
	Local illumination model
	Spherical harmonics

	Precomputed radiance transfer
	Transport matrices for a Lambertian material
	Transport matrices with shadowing
	Global illumination

	Relighting-focused inverse rendering

	Methodology
	Relighting in the two-dimensional image domain
	Relighting in 3D with a custom renderer
	Relighting in 3D with Blender
	Light smoothening process

	Preliminary results
	Relighting in 2D
	Relighting in 3D with custom renderer
	Relighting with Blender

	Conclusion and next steps

