Applying Graph Neural Networks to Identify Denial of
Services Attacks in Vehicular Ad-Hoc Networks

Samuel Henrique Miranda Alves , Aldri Luiz dos Santos!

IDepartamento de Ciéncia da Computacdo (DCC)
Instituto de Ciéncias Exatas (ICEx)
Universidade Federal de Minas Gerais (UFMG)
June 2024

{samuelhma9l, aldri}@dcc.ufmg.br

Abstract. Cyber-security attacks have become a disrupting issue for modern
applications. In the context of autonomous vehicles, this problem can affect the
users in many ways, ranging from security data breaches to a crash in the car’s
system, which prevents the broad availability of these services to society. In
recent years, a vast majority of studies have proposed the use of contemporary
Machine Learning techniques to assist in the detection and prevention of these
attacks. Nevertheless, they still can not keep up with the fast-paced nature of
these adversarial attacks. In this work, we are proposing to study a trendy
method called Graph Neural Networks to evaluate its efficiency and robustness
over these challenges, specifically in the self-driving vehicles environment, using
a publicly available dataset. The preliminary results showed that the measured
metrics achieved a great performance, which paves the way for future works
looking to assess stronger variables and sophisticated scenarios.

1. Introduction

Given the upward usage of the Internet in the various services of society, people and de-
vices are increasingly becoming more reliant on online access [Chase 2013]. However,
this connectivity, despite all of its provided benefits, leaves the users exposed to an en-
vironment full of malicious actors seeking to take advantage of the security failures for
their own profits. Besides that, the systems are increasingly becoming more complex
and dynamic, hindering the handling of the data and a reliable communication over their
components [Ammar et al. 2018]. That way, in order to warrant the correct use of the
applications across the internet, it is required to maintain the full security of the network
using modern solutions.

In the face of the quick development of network systems in the past few years, the
technologies concerning the scenario of Intelligent Transportation Systems (ITS) have
drawn a lot of attention, because they provide smart solutions for the problems related to
vehicle traffic [Alam et al. 2016]. Among the different advantages, we can state the smart
monitor and control of land transportation, improvement of the security service quality,
deployment of mobility services guided to users, etc. All of this contributes to the in-
crease in the efficiency of transport and the prevention of dangerous scenarios, such as
accidents [Hadded et al. 2015]. Yet, although all of the tests and investments that are be-
ing conducted in this area, there are still a significant number of obstacles that impede the
delivery of this technology to society , demanding a deeper evaluation of these problems.

DDoS PortScan Network Scan

Figure 1. Cyber-attacks flows represented as graphs. Image taken from [Pujol-Perich et al. 2021]

Following these lines, a lot of researches over the years have investigated the use
of Machine Learning methods to assist in the protection of systems. Even though they
achieved a great accuracy, most of the times they were not considered for use in the real-
world application’ software [Sommer and Paxson 2010]. This can be explained because
the studied models underlie its analysis from the network traffic data to find features
that allow the recognition of the attacks [Khraisat et al. 2019] . Since these models were
trained over a dataset of specific flow-level features, we can imagine this generated a
high degree of over-fitting and, consequently, a lack of generalization over traffic of other
networks. Considering the context of computer networks, the applications in the real life
hold a dynamic configuration, which means that these features can be easily modified
for attackers to conceal their identity [Corona et al. 2013]. Thereby, despite the good
results during the experiments, these models failed to find an appropriate generalization
to the real world, which makes them strongly vulnerable to traffic changes and adversarial
attacks [Pujol-Perich et al. 2021].

Therefore, new solutions focused on studying the attack structure pattern are re-
quired, instead of working on the features of the data flow, in order to make the methods
more robust. One of the ways to achieve it is to model the network as a graph, as this al-
lows visualization of the arrangement of the elements and, thus, to apply algorithms on
the graph topology as a way of examining the structure of the network and the relationship
of its components [Wu et al. 2024]. Unlike the features from the traffic data, the attack’s
patterns cannot be modified by malicious agent, which is a better way to tackle this issue.

Recently, a lot of studies have been focusing on using Graph Neural Networks
(GNN) to assist in this task. The idea consists of shaping the network elements in a graph
with edges and nodes [Busch et al. 2021] and classify its feature patterns into a benign
or malignant flow. We will follow that approach in this work, considering the context of
Vehicular Ad-Hoc Networks (VANETS). The essential part of this idea handles to capture
not only the individual features of flows, but also their relationships within the network.
This way, we expect the model to learn the underlying structural flow patterns of attacks
and achieve a deeper knowledge and characterization of them.

» o ey eee W ey, Re b,
- ! “ [2m] AN
NN - y DY
e >—% - Bk 3 = Prediction
i - w u D
[]
J . E ST,
a, a,
Input Graph Aggregate Update Neural network

Figure 2. Training steps of a GNN. Image taken from [MITRA et al. 2024]

2. Background

In our project, we are interested in applying GNN methods to support the cyber-security
of vehicular communications. In the following subsections, we will introduce the main
concepts regarding these topics and review the current state-of-the-art, based on recent
studies that cover the proposed areas of this work.

2.1. Graph Neural Networks

Graph Neural Networks (GNNs) are a recent neural network family into the Artificial
Intelligent scope specifically designed to learn and generalize over graph-structured data,
by capturing and modeling the inherent patterns in graphs [Scarselli et al. 2008]. The
essential foundation of GNNs rely on converting the graph structure of our problem into a
valid input for classical Neural Network (NN) frameworks to perform traditional machine
learning tasks, such as classification, regression, or clustering. The representation of
the problem data using a graph form emerges as a good way to provide the means to
capture complex relationships between entities, utilizing the relations with the two basic
components: nodes and edges [Franceschi et al. 2019].

There are mainly three general problems for graphs in the machine learning scope:
node classification, link prediction and graph classification [Wu et al. 2023]. In node-
level classification, the GNN model assigns each node to one or more predefined classes
or predicts a continuous value associated with the node based on its node feature embed-
ding from the neighboring nodes. Link prediction is the problem of predicting new links
between the nodes [Xian et al. 2022]. In graph-level classification, the GNN should learn
to classify entire graphs into specific categories. The GNN should effectively capture and
aggregate information from all the nodes and edges in the graph to make predictions about
the graph as a whole.

The GNN ability to collect the inherent data from the underlying complex rela-
tionships of a graph stems from two prime functions of GNN framework: (1) aggregation
and (2) update (Figure 2). Each node has its own vector of embedding features, which
can also include information about its edges. Starting from an initial part of the graph,
and repeating this process over multiple iterations, the framework learns the informa-
tion of one specific node from its vector features and shares this data with its neighbors.
The received information is then aggregated to form the input for the next step. This is
called the aggregation process. The update step simply consists of updating the nodes
embedding using the learned/aggregated information [Xu et al. 2019] . Since the emer-
gence of GNN frameworks in the last decade [Scarselli et al. 2008], many GNN methods
have been proposed, which only differentiate from the various AGGREGATE(-) and UP-

DATEC(-) functions created, such as Graph Convolutional Networks (GCN) and Graph
Attention Network (GAT).

One of the popular approaches to learning with graph-structured data is to make
use of graph kernels (functions that measure the similarity between graphs) plugged into a
kernel machine, such as a support vector machine [Kriegel et al. 2020]. Kernel methods
refer to machine learning algorithms that learn by comparing pairs of data points using
particular similarity measures — kernels . Another popular approach to training unsuper-
vised GNNss is through the use of classic autoencoder frameworks . Autoencoders were
first introduced in [McClelland and Rumelhart 1986] as neural networks that are trained
to reconstruct their inputs. Specifically, an autoencoder consists of two components, an
encoder and a decoder. The encoder compresses each data point into a low-dimensional
vector representation, whereas the decoder works to reconstruct the original information
from that vector.

However, existing graph autoencoders lack the motivation to represent an entire
neighborhood of the graph nodes, and are primarily designed to decode only direct links
between pairs of nodes, resulting in a minimization of the link reconstruction loss. The
fundamental difficulty in reconstructing all receptive fields of GNNs is due to the non-
trivial design of a reconstruction loss in the irregular structures of the graph. Unfortu-
nately, oversimplification in connection reconstruction causes the learned node represen-
tations to lose a lot of information and thus provides undesirable performance in many
downstream tasks, which is one of the challenges for the use of GNN, especially for
wide-data problems that generate sparse and dense graphs.

2.2. Vehicular Ad-Hoc Networks

Vehicular Ad-Hoc Networks (VANETS) are a complex vehicle communication system
based on smart vehicles and base stations that share information via wireless commu-
nications. It can also include other communication entities around them, such as road-
side units, clouds, fog and grid networks and Internet devices carried by individuals
and pedestrians, which creates a dynamic and challenging network. Automated Vehi-
cles (AV) are categorized into six levels of automation, ranging from 0 to 5 (Figure 3)
[Lamnabhi-Lagarrigue et al. 2017]. We are currently at level 2, which contains a partial
degree of automation. Vehicles above level 3 are still under research and do not require the
driver to keep his hands on the steering wheel. The evolution of Connected Autonomous
Vehicles (CAVs) towards the full level of driving automation, indicates that futuristic ve-
hicles will be very dependent on sensors and that navigation decisions will be dependent
on the quality of the collected data.

One of the ways these systems ensure road safety is through the adoption of
a Cooperative Awareness Service (CAS), which transmits crucial information to des-
ignated receivers regarding the position, motion state, and dimension of an Intelligent
Transportation System Station (ITS-S) [ITS 2019]. Meanwhile, the Collective Percep-
tion Service (CPS) has been developed to facilitate the exchange of information between
Intelligent Transportation Systems (ITS) devices and nearby receivers, enabling them to
share their surroundings. By improving situational awareness, CPS has the potential to
greatly enhance road safety, reduce traffic congestion, and optimize traffic management
[Baccari et al. 2020]. Artificial intelligence and machine learning techniques have fre-
quently been suggested as potential solutions for improving the efficiency of Collective

2 A ’ \ I \
(>4 €t €l

All driving tasks are A few Basic automated features ~ Driver assistance with combined
performed by the driver assist the driver in specific functions. Driver monitoring and
functions intervention required

‘ (& ((ti))
= Y
Level 3: Conditional Level 4: High automation Level 5: Full Automation
automation

The vehicle can handle most The vehicle can perform all Vehicle can handle all driving
driving tasks under certain driving tasks within specific tasks under any condition or
conditions conditions or areas environment

Figure 3. Driving automation levels. Image taken from [Baccari et al. 2024]

Intelligent Transportation Systems (CITSs), with a particular emphasis on the Collective
Perception Service (CPS) [Tang et al. 2015].

An automated vehicle (AV) consists of several key components that can be orga-
nized into three layers: sensing, perception, and decision layers [Deng et al. 2021]. These
components operate collaboratively to allow the vehicle to sense and understand its en-
vironment, make appropriate decisions, and navigate smoothly on the roads. Thus, as
a first step, the sensors take care of collecting data from the environment. These data
are then processed in the second layer in order to extract relevant information, such as
recognizing objects, identifying obstacles, and determining their positions. The extracted
information is subsequently used to generate commands. Finally, the decision layer takes
responsibility for translating orders into mechanical actions such as braking, acceleration,
and steering [Malik et al. 2022] (Figure 4).

Due to sensor data uncertainties caused by either cyber attacks or other external
factors, such as sensor malfunctions, environmental anomalies and weather conditions,
autonomous driving systems require a sophisticated design to capture those abnormalities
and eventually mitigate their impacts [Wang et al. 2020]. Nevertheless, despite all the
efforts that have been made in this sector, there are still a number of significant obstacles
that prevent the widespread use of this technology. One of the primary barriers to its wider
adoption is anomalies and unanticipated happenings [Liu et al. 2021]. Because of this,
anomaly detection is an essential task to guarantee the safety of autonomous vehicles and
the certainty of their decisions. In general, an anomaly, commonly referred to as an outlier
or corner case, occurs when a measurement or reading significantly diverges from the
typical values generated by a sensor. In simpler terms, it represents data that deviates from
the rule and shows unexpected behavior compared to what the sensor usually produces
[Cook et al. 2020].

Environment Cloud
computing
V2V V21 — V2X ﬁ

[)ah Decisions
/ Sensing Perception Decision \
layer layer layer
Lidar Object detection Speed control
¥
. . Navigation/
ads Object recognition
L[Radar : i
Data fusion Pedestrian detection Detected and
- " " d b
Camera Lane line detection sttt
Obstacle detection
Sign detection
Ultrasonic
p—

prediction

:

| GPS/AMU [~ Mups | | Localisation
K / -+ » Communication

Figure 4. Architecture of an automated driving system. Image taken from [Baccari et al. 2024]

Thus, it is mandatory to implement Anomaly Detection Systems (ADS) capa-
ble of mitigating the negative impacts that anomalies can cause on the navigation deci-
sions of the CAVs [Masmoudi et al. 2019]. An ADS for CAVs is a collection of mech-
anisms/algorithms that makes it possible to identify, isolate, and prevent any deviation
from the normal state of the CAV system towards an abnormal situation due to several
causes discussed previously. The ADS is characterized by several tasks, primarily moni-
toring the system state and collecting data against anomalies using advanced algorithms.
Evaluation metrics help improve the reliability and safety of driverless vehicles by en-
suring high-quality solutions for preventing potential incidents and detecting anomalies.
Thus, several metrics are used to measure the technique’s performance and they are varied
depending on the type of approach used (i.e., Machine Learning, Deep Learning or Sta-
tistical Learning). These metrics mainly include Accuracy, Precision, Recall, F1- score,
Mean Squared Error (MSE) and more [Limbasiya et al. 2022], which are some of the
evaluations that are going to be used in the experiment part of this work.

3. Related works

Despite being a topic that has only recently sparked interest in the scientific community,
there are already a variety of studies addressing the two main subjects of this work, which
are the use of GNNss in the context of cyber-attacks and the security of autonomous vehicle
systems. Among them, the main reference to be followed is [da Silva et al. 2023]. In their
work, the authors proposed the creation of a learning methodology in VANETS topology
that prioritizes data anonymization and can be used with any graph learning method.
Additionally, the study confirms the quality of using graph models applied within the
context of vehicular networks and autonomous cars. Thus, the authors conclude that
even with small pieces of information regarding graph topology, in order to respect user
privacy, it is possible to extract important and relevant information that can be useful in
traffic analysis and accident prevention in the era of autonomous vehicles.

In this other work [MITRA et al. 2024], which will also serve as a guide for this
research, the authors studied in detail how the application of GNNs can help break down

the various phases within the stages of the lifecycle of an attack, more specifically a
famous attack called CKC (Lockheed Martin Cyber Kill Chain). Therefore, the study
can serve as a basis to guide this research by providing a model for the application of
the same approaches within cyber-attacks on vehicular networks. The authors highlight
how, among the possible Machine Learning techniques, the GNN model has grown as a
promising alternative for strengthening the effectiveness of defense measures necessary
for attack prevention in a system. This is mainly due to the model’s ability to process and
learn from various types of data present in cyber threats. However, the authors conclude
that, despite all the benefits that the use of this model provides, it is important to remember
that the cyberspace is dynamic and constantly changing, which makes it necessary for
even GNNs to adapt to these changes. This highlights the need to continue with further
studies that enable the exploration of new horizons in this area.

Similarly, within the approach of the autonomous vehicle environment, the study
by [Baccari et al. 2024] analyze the current scenario of research in this field, with special
attention to solutions for detecting anomalies in sensor data. They emphasize that one of
the main challenges for the proper functioning of vehicles lies in the reliability of data
coming from sensors, as they provide important information for system decision-making,
which can consequently result in catastrophic failures. Such sensors are vulnerable to
different types of anomalies, resulting, for example, from adverse weather conditions,
technical problems, and cyber-attacks. Therefore, as a way to contribute to future studies,
the researchers identify in their conclusion of the results what are the main points that need
to be further explored in future research, in order to develop anomaly detection systems
that increase the reliability of autonomous vehicles.

Finally, specifically addressing the security of autonomous vehicle systems, the
authors in [Hidalgo et al. 2021] show how increasing the security and privacy of au-
tonomous vehicles against dangerous cyber-attacks will lead to a considerable reduction
in the overall number of deaths and injuries caused by accidents. Therefore, it is impor-
tant to have a very strong focus on the security of vehicle communication and ensure their
proper functioning, even when they are under attack, as it is a high-risk system. Thus, the
work presents a project, called SerloT, which provides a strategy for monitoring real-time
traffic between different 10T platforms. According to the authors, this system is capable
of recognizing suspicious patterns, evaluating them, and finally providing decisions to
mitigate these actions. Therefore, this project can serve as a reference for estimating the
tests that will be performed on the GNN model and designing the desired performance for
the various attack correspondences.

4. Methodology

This section describes the steps and decisions taken to implement the experimental part
of this project. Essentially, we are interested in testing a simple GNN algorithm with
a set of data generated by a vehicular autonomous network. The concept of modeling
the problem (cyber attacks in VANETS) in a graph form will be followed using the host-
connected proposal provided by [Pujol-Perich et al. 2021] (Figure 1). The available code
of the project on GitHub was also utilized to test our approach, with some adaptations
explained afterward. The authors suggested the representation of each flow as a node of a
graph. Given a set of flows, a host-connection graph includes a node for each distinct host
involved — either sending or receiving traffic. Thus, considering a flow f, with a source

host S, and a destination host D, we create two undirected edges: one from the source host
to the flow (S — f), and another from the flow node to the destination host (f — D). A more
straightforward representation would be to consider only hosts as node graphs, and flows
as graph edges connecting the src/dst hosts. However, the decision to add specific nodes
representing each flow was driven by the way GNN models operate. GNNs consider only
as learnable objects the hidden states of nodes in input graphs. As a result, to properly
learn embeddings on flows, it is needed to add them as nodes of the graph.

This way of representing the graph including heterogeneous elements (i.e., hosts
and flows), which is not well supported by standard GNN models, led the authors to de-
vise as well a new message-passing architecture specifically adapted to process and learn
the host-connection graph features (Figure 5 below). Each node has its own hidden state
(features vector), which is refreshed (update step) considering the data accumulated in
the gather function (aggregation step). The aggregation step simply uses a compression
function to concatenate the hidden states of two connected nodes, i.e., an edge in the
input graph of the GNN. Afterward, the hidden states are updated considering the infor-
mation collected in the new aggregated message. This is done by applying the update
function to the aggregated message and the current hidden state of the node. As a result,
all of the functions used in both steps are learnable functions that can be approximated
by neural networks during training. Particularly, the authors implemented the compres-
sion functions of the aggregations step as 2-layer fully-connected NNs, while the updated
functions are modeled as Gated Recurrent Units (GRUs [Chung et al. 2014]). Finally, it
is necessary to define the readout function. It takes as input the final hidden states of each
flow, and outputs the predicted class for the flow (either a specific attack or benign traffic).
This function is implemented with a 3-layer fully-connected NN, where all the possible
output classes are represented via one-hot encoding.

The data to train the model can be obtained in two ways: by making use of pub-
licly available datasets or by generating our own datasets by simulating the VANET en-
vironment [Nagarajan et al. 2023]. Each approach has its own benefits and drawbacks.
The simulation method is popular in the works done in VANET because of its flexibility
to consider various scenarios. Despite the realistic and reliable results of the simulation
method, using a dataset is more convenient because of its simplicity and lower compu-
tational power requirement. On the other hand, ready-finished datasets may not cover
all of the scenarios required for our cases. Therefore, considering the initial scope of
this project, it would be more suitable to test a public dataset, whereas the simulation
can be used to create more precise scenarios for future works. Taking into account the
needs of our context (identification of hosts, i.e., senders and receivers nodes), the only
available dataset was found in this specific work [Gongalves et al. 2020b]. The authors
presented a dataset for VANET IDS, including both normal and attack data. This dataset
was generated by NS3 as the network simulator and SUMO as the traffic simulator. The
attacks implemented in this dataset are Denial of Service (DoS) and Fabrication attacks for
speed, acceleration, and fake heading. Their proposed dataset is available for researchers
at [Gongalves et al. 2020a]. For our end, we will be using only the DoS data provided.

Since our dataset and the one used in the algorithm we are going to be based on
are different, it is necessary to make some adaptations in the original code. Two main
differences conducted the changes needed for the algorithm to work properly on the new

Message phase Aggregation phase Update phase

M

;

o2 m

@
@

&?@ @? g
j; «

Figure 5. lllustration of the message-passing phase for the host-connection proposed graph. Image
taken from [Pujol-Perich et al. 2021]

dataset: identification of the hosts and classification of the results. In the original code,
the IPs of the hosts were considered as identifiers to construct the graph model. However,
as we do not have IPs for the vehicles, we will simply use the vehicle’s name identifiers
located on the first two columns of the dataset (vehicle sender and vehicle receiver) for
this purpose. The other required modification consisted of changing the final output of the
neural network, since the original project proposed to classify 15 different attacks, but we
are using only 2 labels (benign or DoS). Thus, we switched the soffmax activation function
of the last layer from a categorical cross-entropy loss function to a binary cross-entropy
loss function instead. Lastly, as the environment context of the datasets was also different,
we changed the data normalization statistics file to fit with the features of our dataset.

5. Evaluation, Results and Discussions

This section describes the results achieved by running the algorithm presented in the pre-
vious section with the preferred dataset. The model was trained over 10 epochs, whereas
each epoch contained 1000 steps (iterations over the data). Figures 6 and 7 show exam-
ples of the outputs generated by the running code. Table 1 shows the results reported by
the final step of each epoch. The columns of the table are presented as follows:

* Loss: expected error generated by the utilized loss function (binary cross-entropy).

» Categorical Accuracy: measures the proportion of correctly predicted classes
among all predicted classes. In other words, it calculates how often the predicted
output matches the true output.

* Specificity at sensitivity: computes best specificity where sensitivity is greater
or equal than 0.1 (specified value chosen for our model). Sensitivity, also known
as recall, measures how well a model can detect positive instances. Specificity
measures how well a model can detect negative instances.

* Recall 0: recall metric for the DoS label (proportion of DoS attacks that are cor-
rectly identified by the model).

* Precision 0: precision metric for the DoS label (proportion of DoS attacks that
are correctly predicted by the model).

10

1600/1000
ighted |

Figure 7. Metrics results at the end of the tenth epoch

* Recall 1: recall metric for the benign label (proportion of benign flows that are
correctly identified by the model).

* Precision 1: precision metric for the benign label (proportion of benign flows that
are correctly predicted by the model).

* Macro F1: F1 score calculated by unweighted average of precision and recall.

* Weighted F1: F1 score calculated by weighted average of precision and recall.
The weight used for each label is the number of true instances.

Loss C:zilgl(:;ig;l afls’ :ﬁ;ﬁﬁi}l{y Recall 0 | Precision | Recalll | Precision1 | Macro F1 | Weighted F1
1.3216 | 0.9029 0.9217 0.3451 0.5835 0.9703 0.9247 0.6903 0.8916
0.1987 | 0.9772 0.9898 0.6719 0.9284 0.9967 0.9794 0.8838 0.9755
0.1249 | 0.9791 0.9946 0.7895 0.9576 0.9968 0.9807 0.9271 0.9782
0.1254 | 0.9710 0.9960 0.7913 0.9515 0.9947 0.9731 0.9239 0.9698
0.1123 | 0.9770 0.9957 0.7466 0.9524 0.9970 0.9786 0.9092 0.9757
0.0838 | 0.9863 0.9962 0.8095 0.9562 0.9976 0.9879 0.9347 0.9857
0.0963 | 0.9824 0.9961 0.8280 0.9666 0.9973 0.9837 0.9412 0.9818
0.0943 | 0.9808 0.9963 0.8294 0.9690 0.9971 0.9819 0.9416 0.9802
0.0737 | 0.9858 0.9970 0.8873 0.9731 0.9972 0.9871 0.9602 0.9855
0.0607 | 0.9889 0.9972 0.8755 0.9720 0.9980 0.9901 0.9576 0.9886

As we can see from Table 1, the metrics used to evaluate our model produced
a great performance, since every measure at the end of the tenth epoch (last line of the
table) was near 99%, except for the Recall 0 column (recall metric for the DoS label),
which reached its best value at the ninth epoch (88.73%). It is important, however, to
realize how the metrics evolve over time, generating better results for each step of the
epochs (comparison between Figure 6 and 7). We expect, therefore, to achieve stronger
outcomes as we increase the variable numbers that control the times the model is com-
puted, which should also improve the Recall 0 metric. The variables’ values used in

11

this work were chosen considering its testing purpose only, but also to avoid getting an
over-fitting scenario, since the recall and precision statistics were over 99%.

The reason why the Recall 0 metric presented a lower value over the training
process can be explained by the fact that these scenarios mostly have unpredictable char-
acteristics. Therefore, the high variability of the features may have complicated the gener-
alization task of the model. It is also worth pointing out that the scenarios from the dataset
were greatly unbalanced, with 70% of the cases being a benign flow and only 30% of the
cases consisting of DoS attacks. This may be the biggest cause that prevented the model
from find a good approximation for the malign flow scenarios.

6. Conclusion

Solutions for intrusion detection in autonomous vehicles are essential to prevent a failure
of these systems. While a lot of Machine Learning techniques were invented over the
past few decades and tested for this specific context, most of them failed to come up
with a good generalization method for the application scenarios in real life. To overcome
this constraint, recently researches have been examining the power of GNN models to
generalize network problems involving cyber attacks. This work intended to join these
two areas, which is something scarce, if not unique, among the academic work focused
on the VANETS scope. The GNN evaluation carried out by analytic modeling took into
account dataset and the results achieved confirmed the remarks pointed out by the recent
studies. For future works, we intend to improve the study using simulation tools, such
as NS3, SUMO and Omnet++, but also to experiment with novel GNN algorithms by
applying newly reviewed concepts in other works.

References

Alam, M., Ferreira, J., and Fonseca, J. (2016). Introduction to intelligent transportation
systems. Studies in Systems, Decision and Control - Springer, pages 19250-19276.
Ammar, M., Russello, G., and Crispo, B. (2018). Internet of things: A survey on the

security of iot frameworks. Journal of Information Security and Applications, 38.

Baccari, S., Hadded, M., Ghazzai, H., Touati, H., and Elhadef, M. (2024). Anomaly de-
tection in connected and autonomous vehicles: A survey, analysis, and research chal-
lenges. IEEE Access, 12:19250-19276.

Baccari, S., Touati, H., Hadded, M., and Muhlethaler, P. (2020). Performance impact anal-
ysis of security attacks on cross-layer routing protocols in vehicular ad hoc networks.
2020 International Conference on Software, Telecommunications and Computer Net-
works (SoftCOM).

Busch, J., Kocheturov, A., Tresp, V., and Seidl, T. (2021). Nf-gnn: Network flow graph
neural networks for malware detection and classification. 33rd International Confer-
ence on Scientific and Statistical Database Management (SSDBM 2021).

Chase, J. (2013). The evolution of the internet of things. Texas Instruments.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. NIPS 2014 Deep Learning and Rep-
resentation Learning Workshop.

Cook, A. A., Misirli, G., and Fan, Z. (2020). Anomaly detection for iot time-series data:
A survey. IEEE Internet of Things Journal, 7:6481 — 6494.

12

Corona, 1., Giacinto, G., and Roli, F. (2013). Adversarial attacks against intrusion detec-
tion systems: Taxonomy, solutions and open issues. Information Sciences - Elsevier,

239:201-225.

da Silva, E. S., Pedrini, H., and Santos, A. (2023). Applying graph neural networks to
support decision making on collective intelligent transportation systems. /[EEE TRANS-
ACTIONS ON NETWORK AND SERVICE MANAGEMENT.

Deng, Y., Zhang, T., Lou, G., Zheng, X., Jin, J., and Han, Q.-L. (2021). Deep learning-
based autonomous driving systems: A survey of attacks and defenses. IEEE Transac-
tions on Industrial Informatics, 17:7897 —7912.

Franceschi, L., Niepert, M., Pontil, M., and He, X. (2019). Learning discrete structures for
graph neural networks. 36th International Conference on Machine Learning (ICML).

Gongalves, F., Ribeiro, B., Gama, O., Santos, J., Costa, A., Dias, B., Nicolau, M. J.,
Macedo, J., and Santos, A. (2020a). Dataset collection. https://github.com/
fabio-r—goncalves/dataset—-collection. [Online; accessed June 2024].

Gongalves, F., Ribeiro, B., Gama, O., Santos, J., Costa, A., Dias, B., Nicolau, M. J.,
Macedo, J., and Santos, A. (2020b). Synthesizing datasets with security threats for
vehicular ad-hoc networks. GLOBECOM 2020 - 2020 IEEE Global Communications
Conference.

Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., and Saidane, L. A. (2015). Tdma-
based mac protocols for vehicular ad hoc networks: A survey, qualitative analysis, and
open research issues. IEEE Communications Surveys and Tutorials, 17(4):2461-2492.

Hidalgo, C., Vaca, M., Nowak, M. P., Frolich, P., Reed, M., Al-Naday, M., Mpatziakas,
A., Protogerou, A., Drosou, A., and Tzovaras, D. (2021). Detection, control and miti-
gation system for secure vehicular communication. Elsevier Inc.

ITS, E. T. (2019). Cooperative intelligent transport systems (c-its) guidelines on the usage
of standards. ETSI European Standard.

Khraisat, A., Gondal, 1., Vamplew, P., and Kamruzzaman, J. (2019). Survey of intrusion
detection systems: techniques, datasets and challenges. Springer Open Access.

Kriegel, N. M., Johansson, F. D., and Morris1, C. (2020). A survey on graph kernels.
Applied Network Science - Published by Springer, 5.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P.,
Murray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., and den Hof, P. V. (2017). Sys-
tems and control for the future of humanity, research agenda: Current and future roles,
impact and grand challenges. Annual Reviews in Control, 43:1 — 64.

Limbasiya, T., Teng, K. Z., Chattopadhyay, S., and Zhou, J. (2022). A systematic survey
of attack detection and prevention in connected and autonomous vehicles. Vehicular
Communications - Published by Elsevier, 37.

Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q., and Shi, W. (2021). Computing
systems for autonomous driving: State-of-the-art and challenges. IEEE Internet of
Things Journal, 8:6469 — 6486.

Malik, S., Khan, M. A., El-Sayed, H., Khan, J., and Ullah, O. (2022). How do autonomous
vehicles decide? Sensors (ISSN 1424-8220), 23.

Masmoudi, M., Ghazzai, H., Frikha, M., and Massoud, Y. (2019). Object detection learn-
ing techniques for autonomous vehicle applications. 2019 IEEE International Confer-
ence on Vehicular Electronics and Safety (ICVES).

13

McClelland, J. L. and Rumelhart, D. E. (1986). Parallel Distributed Processing, Vol-
ume 2: Explorations in the Microstructure of Cognition: Psychological and Biological
Models. The MIT Press.

MITRA, S., CHAKRABORTY, T., NEUPANE, S., PIPLAIL, A., and MITTAL, S. (2024).
Use of graph neural networks in aiding defensive cyber operations. ACM Trans. Priv.
Sec.

Nagarajan, J., Mansourian, P., Shahid, M. A., Jaekel, A., Saini, 1., Zhang, N., and Knep-
pers, M. (2023). Machine learning based intrusion detection systems for connected au-
tonomous vehicles: A survey. Peer-to-Peer Networking and Applications - Published
by Springer, 16:2153 — 2185.

Pujol-Perich, D., Sudrez-Varela, J., Cabellos-Aparicio, A., and Barlet-Ros, P. (2021). Un-
veiling the potential of graph neural networks for robust intrusion detection. Barcelona
Neural Networking Center, Universitat Politecnica de Catalunya, Spain.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The
graph neural network model. /IEEE Transactions on Neural Networks, 20:61 — 80.

Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine learning
for network intrusion detection. 2010 IEEE Symposium on Security and Privacy.

Tang, Y., Zhang, C., Gu, R., and Li, P. (2015). Vehicle detection and recognition for
intelligent traffic surveillance system. Multimedia Tools and Applications - Springer,
76:5817 — 5832.

Wang, J., Zhang, L., Huang, Y., and Zhao, J. (2020). Safety of autonomous vehicles.
Journal of Advanced Transportation.

Wu, L., Lei, S., Liao, F.,, Zheng, Y., Liu, Y., Fu, W., Song, H., and Zhou, J. (2024). Eg-
conmix: An intrusion detection method based on graph contrastive learning. arXiv
e-prints.

Wu, L., Lin, H., Gao, Z., Tan, C., and Stan.Z.Li (2023). Self-supervised learning on
graphs: Contrastive, generative, or predictive. IEEE Transactions on Knowledge and
Data Engineering, 35:4216 — 4235.

Xian, X., Wu, T., Ma, X., Qiao, S., Shao, Y., Wang, C., Yuan, L., and Wu, Y. (2022). Gen-
erative graph neural networks for link prediction. arXiv preprint arXiv:2301.00169.
Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural

networks? 2019 International Conference on Learning Representations (ICLR).

