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Resumo. A Internet das Coisas Industrial (IIoT) tem se tornado fundamental
para a modernização de ambientes produtivos, exigindo redes de comunicação
cada vez mais robustas e resilientes. No entanto, falhas de enlace represen-
tam uma ameaça constante à continuidade das operações industriais, podendo
comprometer a qualidade do serviço e paralisar processos críticos. Este tra-
balho propõe uma abordagem baseada em Aprendizado por Reforço (Reinfor-
cement Learning – RL) para promover a resiliência topológica em redes IIoT.
Um agente é treinado em ambiente simulado para detectar falhas e tomar de-
cisões corretivas de forma autônoma, reorganizando a estrutura da rede diante
de alterações na conectividade. A proposta visa reduzir o impacto de falhas
de comunicação, melhorar a continuidade dos serviços e demonstrar a viabili-
dade do uso de inteligência artificial para o gerenciamento adaptativo de redes
industriais.

Abstract. The Industrial Internet of Things (IIoT) has become essential for mo-
dernizing production environments, demanding increasingly robust and resili-
ent communication networks. However, link failures pose a constant threat to
operational continuity, potentially degrading service quality and interrupting
critical processes. This work proposes a Reinforcement Learning (RL)-based
approach to enhance topological resilience in IIoT networks. An agent is trai-
ned in a simulated environment to autonomously detect failures and take cor-
rective actions, dynamically reorganizing the network structure in response to
connectivity changes. The proposed solution aims to reduce the impact of com-
munication failures, improve service continuity, and demonstrate the feasibility
of using artificial intelligence for adaptive management in industrial networks.

1. Introdução

Com o avanço da digitalização nos ambientes industriais, a Internet das Coisas
Industrial (IIoT) tem se consolidado como um pilar importante para a automação e oti-
mização de processos produtivos focados na modernização de processos, integração de
equipamentos e ampliação da eficiência operacional. De acordo com Masum [Mas23],
a IIoT permite a interconexão entre sensores, atuadores e sistemas de controle, promo-
vendo automação, monitoramento em tempo real e tomada de decisão baseada em dados.
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A proliferação massiva de dispositivos nesse ecossistema, no entanto, exige uma arquite-
tura de rede bem organizada, capaz de garantir que os dispositivos possam se comunicar
sem interferências para operar serviços básicos, como a coleta e disseminação de dados
de forma contínua e confiável. Entretanto, essa crescente dependência traz também novos
desafios para a manutenção da conectividade e da resiliência da rede.

Nesse sentido, um dos principais problemas enfrentados em redes IIoT é a ocor-
rência de falhas de enlace, causadas por interferência, limitações físicas da infraestrutura
ou ataques cibernéticos. Tais falhas comprometem a topologia da rede, prejudicando a
troca de informações entre dispositivos e, em casos críticos, paralisando operações in-
dustriais. Segundo Berger et al. [BER+21], sistemas resilientes devem ser capazes de
manter seu funcionamento mesmo diante de falhas e se recuperar rapidamente, garan-
tindo níveis mínimos de desempenho. Por outro lado, abordagens tradicionais baseadas
em redundância fixa ou reconfiguração manual nem sempre são eficientes, principalmente
em ambientes dinâmicos como os de redes IIoT [ZXW+24].

Diante disso, cresce o interesse por soluções inteligentes e adaptativas, especial-
mente aquelas baseadas em técnicas de inteligência artificial. O Aprendizado por Reforço
(Reinforcement Learning – RL) destaca-se por permitir que agentes aprendam, por meio
de interação com o ambiente, quais ações tomar em diferentes situações para maximizar
a continuidade do sistema [KLM96]. Essa técnica é especialmente adequada em cenários
onde o agente não possui conhecimento prévio do ambiente e precisa aprender estratégias
por tentativa e erro [ADBB17]. Além disso, o RL é eficaz em ambientes desconhecidos e
sujeitos a alterações frequentes na topologia da rede.

A literatura tradicionalmente aborda a quebra de enlaces com métodos reativos
ou baseados em redundância. Contudo, vista a alta demanda por conectividade e a natu-
reza dinâmica das redes IIoT, essas abordagens se mostram limitadas. Por isso, pesquisas
recentes têm explorado o emprego de técnicas de RL, inclusive com modelos mais avan-
çados como o Deep Reinforcement Learning, para restaurar ou reorganizar topologias de
redes sem fio de forma resiliente, como demonstrado por Abdelmoaty et al. [AND+22].

Dessa forma, este trabalho propõe a aplicação de Aprendizado por Reforço como
uma abordagem para aprimorar a resiliência da conectividade topológica em redes IIoT
sujeitas a falhas de enlace. A proposta envolve o desenvolvimento de um ambiente si-
mulado no qual um agente, por meio de interações sucessivas, aprende a identificar e
responder a falhas de maneira autônoma. O agente será treinado para explorar possí-
veis ações sobre a topologia da rede e, com base no retorno de suas decisões, construir
estratégias eficazes para reestruturar a comunicação entre os nós mesmo em cenários ad-
versos e anômalos na infraestrutura em questão. Essa abordagem permite avaliar, em
ambiente controlado, a eficácia de decisões adaptativas que seriam impraticáveis de testar
diretamente em ambientes industriais reais. Ao adotar esse caminho, busca-se não ape-
nas demonstrar a viabilidade técnica da proposta, mas também contribuir para soluções
mais autônomas e inteligentes aplicáveis a sistemas críticos, nos quais a manutenção da
conectividade contínua é essencial para garantir a robustez, a continuidade operacional e
a segurança dos processos industriais.

O restante deste artigo está organizado da seguinte forma: a Seção 3 apresenta os
conceitos fundamentais para a compreensão da proposta. A Seção 2 revisa os trabalhos
relacionados na literatura. A Seção 3.4 detalha a metodologia desenvolvida. A Seção 5
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descreve a avaliação preliminar, os resultados parciais e as perspectivas futuras. Por fim,
a Seção 6 conclui o trabalho.

2. Trabalhos relacionados
Garantir a conectividade para serviços básicos, como a coleta e disseminação de

dados, é um requisito fundamental em redes IIoT. Atingir essa meta de forma robusta
impõe diversos desafios, principalmente quando se considera a necessidade de resiliência
contra falhas de enlace. A literatura que aborda este problema busca, portanto, responder
a questões complexas, como: (i) assegurar a continuidade dos fluxos de dados essenciais
mesmo após a perda de um ou mais enlaces; (ii) reconfigurar dinamicamente a topolo-
gia da rede para contornar rotas inoperantes de maneira eficiente; e (iii) desenvolver um
mecanismo de tomada de decisão que seja autônomo e adaptativo, capaz de aprender a
melhor estratégia de recuperação sem intervenção humana. Para endereçar esses desafios
de forma integrada, o Aprendizado por Reforço tem se destacado como uma abordagem
promissora. Esta seção revisa os principais trabalhos que aplicam RL e outras técnicas de
IA para promover a resiliência topológica em redes industriais.

O artigo de Meng et al. [MIK19], propõe o uso de DRL para otimizar a topologia
de redes de sensores sem fio auto-organizadas. O estudo investiga como o DRL pode ser
empregado para melhorar a eficiência da rede, ajustando sua estrutura de forma dinâmica
para atender a requisitos de desempenho, como consumo de energia e resiliência a fa-
lhas de enlace. A pesquisa destaca a capacidade do modelo de aprender a reconfigurar a
rede em tempo real, o que é particularmente útil para redes IIoT, onde a manutenção da
conectividade é crucial. O trabalho demonstra que o uso de DRL pode otimizar significa-
tivamente o desempenho da rede sem a necessidade de intervenções manuais, tornando-a
uma solução adaptativa e escalável.

Expandindo essa linha de pesquisa, o estudo [LWP+23] introduz o algoritmo
Advantage Actor Critic-Graph Searching (A2C-GS). A abordagem combina DRL com
Redes Neurais Gráficas (GNNs) para otimizar a topologia em ambientes complexos e
dinâmicos. Esse algoritmo se destaca pela capacidade de lidar com espaços de topologia
de alta dimensão, mantendo a conectividade da rede mesmo quando a infraestrutura sofre
alterações ou falhas. Os resultados, testados em diversas configurações de rede, indicam
que a sinergia entre DRL e GNNs leva a uma organização mais eficiente e resiliente, o
que é fundamental para a operação contínua de sistemas IIoT.

Desviando o foco da otimização de topologia para a detecção de falhas, o trabalho
[ZLY+20] aborda a identificação de falhas de dispositivos utilizando aprendizado fede-
rado e blockchain. Embora não utilize RL, sua relevância está em propor um mecanismo
de detecção de anomalias descentralizado e seguro. O aprendizado federado treina mode-
los de IA localmente nos dispositivos, preservando a privacidade dos dados, enquanto o
blockchain garante a integridade e rastreabilidade dos alertas de falha. O estudo evidencia
como técnicas de aprendizado de máquina, combinadas com outras tecnologias, podem
aumentar a confiabilidade geral das redes industriais.

Em conjunto, os trabalhos analisados demonstram uma clara tendência no uso de
Inteligência Artificial para criar redes mais autônomas e resilientes. As abordagens base-
adas em DRL e GNNs são eficazes na otimização da topologia, enquanto outras técnicas
avançam na detecção de falhas. No entanto, ainda há uma oportunidade para desenvolver
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soluções que se concentrem especificamente na recuperação de falhas de enlace em tempo
real dentro de estruturas de clusters dinâmicos, como proposto neste artigo. Nossa abor-
dagem busca, portanto, construir sobre essas fundações, aplicando RL para treinar um
agente especializado em reconfigurar a conectividade local de clusters de forma rápida e
eficiente, garantindo a continuidade operacional no nível topológico da rede IIoT.

3. Mecanismos para controle de falhas de enlace em redes IIoT
Para que o sistema funcione de forma confiável, é importante definir bem o tipo de

rede usada, como a comunicação acontece entre os dispositivos e de que forma as falhas
podem surgir. Também é necessário entender qual será a “inteligência” do sistema, ou
seja, como o agente toma decisões e quais informações ele utiliza para isso. Outro ponto
essencial é a arquitetura do sistema: quantos módulos ela terá, como esses módulos se
comunicam e qual modelagem será usada para representar a rede, como grafos ou con-
juntos. Definir esses elementos permite criar uma estrutura organizada e preparada para
lidar com problemas reais de comunicação. Para construir a base desta proposta, esta
seção detalha os conceitos essenciais que a fundamentam. O objetivo é contextualizar o
desafio de garantir a resiliência em redes IIoT, explorando desde a definição do ambiente
industrial conectado, passando pela natureza das falhas de comunicação, até a apresen-
tação do Aprendizado por Reforço (RL) como a ferramenta escolhida para promover a
adaptação autônoma da rede.

3.1. Internet das Coisas Industrial (IIoT)

A Internet das Coisas Industrial (IIoT) representa a aplicação do conceito de IoT
em ambientes de produção, como fábricas, refinarias e linhas de montagem automatiza-
das. Mais do que apenas conectar dispositivos, a IIoT promove a convergência entre a
Tecnologia da Informação e a Tecnologia da Operação, integrando sensores, atuadores,
Controladores Lógicos Programáveis e sistemas de supervisão. A Figura 1 ilustra um
modelo conceitual de uma rede industrial. Nesses cenários, a comunicação constante e
de baixa latência é crítica, pois sustenta o monitoramento em tempo real, o controle de
processos e a tomada de decisão baseada em dados [Mas23]. Portanto, garantir a con-
tinuidade e a estabilidade da conectividade é um pilar para a eficiência e segurança das
operações industriais.

3.2. Falhas de Enlace em Redes IIoT

Apesar de seu potencial, a IIoT, como qualquer rede, enfrenta desafios relaciona-
dos à conectividade segura e estável [HAAS21]. A presença de dispositivos conectados
em larga escala, combinada com a complexidade das operações industriais, torna esses
sistemas suscetíveis a falhas de comunicação, ameaças cibernéticas e degradações de in-
fraestrutura [855]. Essas vulnerabilidades impactam diretamente o desempenho da rede,
comprometendo sua confiabilidade [Mas23]. As redes IIoT, em especial, sofrem com fa-
lhas de enlace (ou link) provocadas por interferências de sinal, sobrecarga de tráfego ou
interrupções físicas, como ilustrado na Figura 2. Para lidar com esses problemas, soluções
tradicionais baseadas em redundância fixa ou monitoramento reativo já não se mostram
suficientes, o que reforça a necessidade de abordagens mais inteligentes e adaptativas.

É nesse contexto que o conceito de resiliência se torna central. A resiliência em
redes IIoT é essencial para garantir a continuidade dos serviços mesmo diante de falhas
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Figura 1. Exemplo de rede IIoT

ou ataques. Segundo Berger et al. [BER+21], resiliência consiste na capacidade de um
sistema de se recuperar ou se adaptar rapidamente frente a perturbações, mantendo seu
funcionamento dentro de níveis aceitáveis. Nesse sentido, a adoção de mecanismos di-
nâmicos e autônomos, capazes de reagir a falhas de forma eficiente, é fundamental para
assegurar a confiabilidade e a disponibilidade das redes IIoT, sustentando a operação con-
tínua de sistemas críticos.

Figura 2. Falha de enlace e sobrecarregamento da rede

3.3. Aprendizado por Reforço (RL)

Dentro do escopo de técnicas de Inteligência Artificial para a construção de sis-
temas autônomos, o Aprendizado por Reforço (do inglês, Reinforcement Learning - RL)
apresenta-se como uma abordagem promissora para o tratamento de falhas de enlace em
redes IIoT. O RL é uma área do aprendizado de máquina na qual um agente aprende a
tomar decisões por meio da interação com um ambiente. Conforme ilustrado na Figura 3,
a cada ação tomada, o agente recebe um feedback na forma de uma recompensa (ou pena-
lidade) e uma observação do novo estado do ambiente. Ao longo do tempo, ele ajusta sua
política de decisão para maximizar a recompensa acumulada [ADBB17]. Essa abordagem
é especialmente adequada para cenários onde não há um conhecimento prévio completo
do ambiente, sendo necessário aprender estratégias por tentativa e erro, como é o caso de
topologias de rede IIoT que mudam dinamicamente.
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Figura 3. Exemplo de fluxo de agente em aprendizado por reforço

Uma evolução do RL, o Aprendizado por Reforço Profundo (Deep Reinforcement
Learning - DRL), utiliza redes neurais profundas para aproximar a função de valor ou a
política do agente, permitindo lidar com espaços de estado e ação de alta dimensão. Essa
combinação torna o RL aplicável a problemas mais complexos, como a reconfiguração
topológica de redes IIoT em tempo real [ADBB17]. Um exemplo de aplicação de DRL foi
desenvolvido no trabalho de Abdelmoaty et al. [AND+22], no qual os autores propuseram
um algoritmo de DRL para projetar uma topologia de backhaul sem fio resiliente. Nesse
estudo, o agente foi treinado para decidir quais nós deveriam atuar como hubs e como
os enlaces deveriam ser organizados para garantir a conectividade mesmo após falhas.
Os resultados demonstraram que a abordagem foi capaz de manter a resiliência da rede
com eficiência próxima à de soluções ótimas, mas com menor custo computacional. Esse
tipo de aplicação evidencia o potencial do DRL para lidar com falhas em redes IIoT,
oferecendo caminhos promissores para manter a conectividade topológica em cenários
adversos.

3.4. Funcionamento

Considere uma rede IIoT formada por dispositivos distribuídos em um ambiente
industrial simulado. A organização inicial da rede ocorre pela formação dinâmica de
agrupamentos, nos quais os dispositivos são classificados com base na sua proximidade
espacial, capacidades de comunicação e tipo de dado transmitido. Cada agrupamento,
ou cluster, possui um nó líder responsável por coordenar a troca de mensagens internas
e estabelecer a comunicação direta com o Access Point (AP). Essa estrutura hierárquica
fornece escalabilidade e estabilidade ao tráfego de informações da rede.

No estágio inicial, todos os clusters estão corretamente formados e seus líderes
mantêm comunicação estável com o AP. O fluxo de mensagens ocorre de forma contínua:
os dispositivos enviam dados, recebem atualizações e executam tarefas sem interrupções
aparentes. Essa fase representa o comportamento normal da rede e serve como referência
para analisar o impacto de falhas estruturais. A falha considerada neste estudo ocorre no
enlace entre o líder de um cluster e o AP. Trata-se de uma falha crítica, pois interrompe
a principal rota de comunicação daquele agrupamento. Como consequência, todos os
dispositivos daquele cluster tornam-se nós órfãos, perdendo acesso ao restante da rede e
deixando de transmitir suas mensagens de forma adequada.

Assim que a falha é detectada, o agente de Aprendizado por Reforço (AR) é acio-
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nado. O agente recebe o estado atualizado da rede, identificando o enlace comprometido,
o líder afetado e o conjunto de nós órfãos associados. Com base nessas informações, o
agente avalia diferentes estratégias de reorganização capazes de restabelecer rapidamente
a conectividade da rede.A decisão do agente consiste em selecionar uma nova estrutura
de conectividade para integrar novamente os nós órfãos ao fluxo de comunicação. Essa
reestruturação pode envolver aproximar dispositivos de clusters vizinhos, redirecioná-los
para outro líder próximo ou criar enlaces alternativos por meio de nós intermediários. O
agente busca uma solução localizada, intervindo apenas na área afetada pela falha e evi-
tando reconfigurações globais da rede. Essa abordagem reduz significativamente o tempo
de recuperação e minimiza o impacto da falha sobre os demais agrupamentos.

Após a seleção da ação, o agente aplica a reorganização proposta. Os nós rea-
locados estabelecem novamente sua conexão com o AP e retomam o fluxo normal de
mensagens. Caso a reconfiguração seja eficiente, o tráfego permanece estável e a perda
de dados ocasionada pela falha é mínima. A rede continua sua operação com a nova topo-
logia, demonstrando a capacidade adaptativa do sistema diante de interrupções críticas.

3.4.1. Modelagem do Agente de Aprendizado por Reforço

A atuação do agente de AR é formalizada por meio da tripla (S,A,R), que define
o estado observado, o espaço de ações disponíveis e o sistema de recompensas utilizado
para guiar o processo de aprendizagem.

Estado (S). O estado da rede no instante t, denotado por St, é composto por:

• Topologia atual da rede (Gt), incluindo clusters e líderes;
• Conjunto de nós órfãos (Ot);
• Métricas de conectividade locais (grau, vizinhança, distância ao AP);
• Qualidade de comunicação do enlace antes da falha;
• Custo estimado de mover cada nó (Cmove).

Formalmente:

St =
(
Gt, Ot, deg(v), dist(v, AP ), Cmove(v)

)
Ação (A). O agente seleciona uma ação At dentre as seguintes possibilidades:

• ReassignCluster: realocar nós órfãos para clusters vizinhos;
• NewLeaderSelect: eleger novo líder entre nós acessíveis;
• BridgeCreate: criar enlace alternativo via nó intermediário;
• ExpandRange: mover fisicamente um nó para reaproximação funcional.

Logo:

At ∈ {ReassignCluster,NewLeaderSelect,BridgeCreate,ExpandRange}

Recompensa (R). A função de recompensa penaliza soluções que causem reestrutura-
ções extensas e valoriza ações rápidas e eficientes.
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A recompensa é calculada como:

Rt = α ·∆QI − β · Cmove − γ · Trec

onde:

• ∆QI = ganho no índice de qualidade após a reconfiguração;
• Cmove = custo total de realocação dos nós órfãos;
• Trec = tempo necessário para restabelecer a conexão com o AP;
• α, β, γ = pesos calibrados empiricamente.

Reforços positivos ocorrem quando o agente restaura a conectividade com custo
mínimo; valores negativos aparecem quando a ação aumenta instabilidade ou isola mais
dispositivos.

3.4.2. Ciclo de Detecção e Reconfiguração

A seguir apresenta-se o pseudocódigo que descreve o ciclo completo de detecção
de falha, avaliação do agente e reconfiguração da rede.

Algorithm 1: Ciclo de Detecção e Reconfiguração da Rede IIoT
1 [1] Rede G, conjunto de clusters C, agente de AR while rede estiver ativa do
2 end
3 Monitorar enlaces entre líderes e AP if falha detectada em enlace (leader, AP )

then
4 end
5 Identificar nós órfãos Ot Construir estado St Selecionar ação At = π(St) Aplicar

ação na topologia G Atualizar clusters e líderes Avaliar estabilidade da
comunicação Calcular recompensa Rt Atualizar política de aprendizado π

4. Avaliação
A metodologia empregada para este trabalho visa o uso de Aprendizado por Re-

forço para identificar falhas de enlace em redes IIoT e tomar decisões autônomas para
realocar os dispositivos da rede, garantindo a continuidade da comunicação e a resiliência
topológica. O processo será dividido em três etapas principais: simulação da rede IIoT,
treinamento do agente de RL e realocação dinâmica dos dispositivos para restaurar a co-
nectividade da rede. As simulações foram realizadas no simulador NS-3 (versão 3.36),
integrado à biblioteca ns3-gym, que permite a troca de informações entre o ambiente e o
agente de RL. Esse conjunto de ferramentas possibilitou a execução dos cenários em di-
ferentes escalas de rede, incluindo redes com 100, 150 e 200 nós, cada uma executada por
35 rodadas independentes para garantir resultados estatisticamente consistentes. O tempo
total de simulação em cada rodada foi de 900 segundos, período suficiente para observar
a formação dos clusters, a ocorrência das falhas de enlace e a recuperação realizada pelo
agente.

A construção da rede IIoT será feita utilizando uma topologia de clusters dinâmi-
cos, onde os dispositivos serão agrupados com base em suas características semelhantes,
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como capacidade de comunicação, proximidade geográfica e tipo de dados transmitidos.
Essa estrutura permite uma organização flexível da rede, facilitando a adaptação a fa-
lhas de enlace. Quando uma falha de enlace for detectada, o agente de RL avaliará o
impacto dessa falha nos clusters existentes e determinará se a realocação de dispositivos
é necessária para preservar a conectividade da rede. O modelo de clusters dinâmicos é
essencial para garantir que a estrutura da rede possa se adaptar rapidamente às mudanças
nas condições de comunicação, mantendo a operação da rede IIoT [PUNS20].

Para definir os clusters dinâmicos, será utilizado um método de similaridade de
características entre os dispositivos da rede. As variáveis consideradas incluem a distân-
cia entre dispositivos, capacidade de comunicação e os requisitos de processamento de
cada dispositivo. A similaridade será calculada utilizando uma métrica de distância, que
permite agrupar dispositivos com características semelhantes [PUNS20]. Quando uma
falha de enlace é detectada, o agente de RL analisará os clusters afetados e calculará o
impacto da falha na conectividade da rede. Com base nesse cálculo, o agente decidirá
se os dispositivos precisam ser realocados dentro do mesmo cluster ou se será necessário
movê-los para outros clusters próximos, com o objetivo de otimizar a conectividade da
rede e minimizar a interrupção na comunicação. Esse processo de realocação será feito
de maneira dinâmica, levando em consideração as condições da rede em tempo real.

O treinamento do agente de RL será realizado em um ambiente simulado, onde o
agente interage com a rede IIoT para aprender a identificar falhas de enlace e tomar de-
cisões sobre a realocação dos dispositivos [AND+22]. Durante o treinamento, o agente
receberá uma recompensa ou penalidade com base no sucesso de suas ações, que serão
avaliadas em termos de manutenção da conectividade e qualidade do serviço (QoS) da
rede. A função de recompensa será projetada para considerar aspectos como o tempo de
recuperação da rede, a taxa de falhas detectadas e a eficiência da realocação dos disposi-
tivos. O agente usará técnicas de RL, para aprender as melhores estratégias de realoca-
ção. Ele será treinado para mapear a topologia da rede e as falhas de enlace para ações
corretivas, como mover dispositivos de um cluster para outro ou reorganizar fluxos de
comunicação entre os dispositivos afetados. Durante o treinamento, o agente será exposto
a diferentes cenários de falhas de enlace, permitindo que ele aprenda a responder a essas
falhas de maneira adaptativa e eficiente.

Uma vez que uma falha de enlace é detectada no sistema, conforme ilustrado
na Figura 4, o agente de RL assume a responsabilidade pela recuperação. Sua tarefa
é realocar os dispositivos afetados, baseando-se em dois critérios principais: preservar
a conectividade e otimizar o desempenho da rede. Para isso, o agente calcula a melhor
maneira de redistribuir os dispositivos e executa a realocação dinâmica, como demonstra a
Figura 5, onde um novo enlace é estabelecido para contornar a falha. Este processo utiliza
funções de agregação, que combinam as informações de conectividade, e de atualização,
que ajustam a estrutura da rede, garantindo que a comunicação seja restaurada de maneira
rápida e eficiente.

A avaliação do desempenho do agente será realizada com base em diversas mé-
tricas de desempenho, incluindo o tempo de recuperação da rede, a taxa de sucesso da
realocação e a qualidade da conectividade da rede. As métricas serão analisadas para de-
terminar a eficácia da abordagem proposta em comparação com métodos tradicionais de
reconfiguração de rede, como redundância fixa ou reconfiguração manual. O desempenho
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Figura 4. Detecção da falha de enlace

Figura 5. Agente agindo após a identificação da falha

do agente será testado em diferentes cenários simulados para avaliar sua capacidade de se
adaptar rapidamente às falhas de enlace e melhorar a resiliência da rede IIoT. O objetivo
final é demonstrar que o agente de RL pode não apenas detectar falhas de enlace, mas
também realizar a realocação dinâmica de dispositivos de forma autônoma, preservando
a continuidade dos serviços e garantindo a resiliência da rede em tempo real.

5. Resultados

Esta seção apresenta os resultados das simulações realizadas com 100, 150 e 200
dispositivos IIoT, considerando três aspectos centrais: (i) a quantidade de tarefas aloca-
das, (ii) o número de agrupamentos formados, e (iii) o número de nós realocados após
a ocorrência de uma falha de enlace. Os resultados ilustrados na Figura 6 mostram que
a arquitetura proposta preserva um elevado nível de alocação de tarefas mesmo após a
falha. Nos três cenários avaliados, observa-se que o número de tarefas despachadas (TD)
permanece muito próximo ao número de tarefas atendidas (TA), com variação mínima
entre eles. Essa proximidade entre TD e TA evidencia que o sistema continua proces-
sando as tarefas de maneira estável, mesmo diante da interrupção do enlace. Isso indica
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que o mecanismo de recuperação atua de forma eficaz, compensando rapidamente a falha
e evitando degradação significativa no fluxo operacional. Em outras palavras, o com-
portamento observado confirma que a estratégia de resiliência implementada é capaz de
sustentar tanto o desempenho quanto a continuidade do sistema durante eventos adversos.

Figura 6. Quantidade de tarefas alocadas nos cenários com 100, 150 e 200 dispositivos IoT.

A Figura 7 evidencia que a maior parte dos agrupamentos formados é composta
por clusters Aptos, enquanto os clusters Ociosos aparecem em quantidade significativa-
mente menor nos três cenários analisados. Esse comportamento sugere que o processo de
clusterização distribui os dispositivos de maneira estável e equilibrada, evitando tanto a
formação de nós isolados quanto a criação de clusters excessivamente desbalanceados. A
manutenção dessa proporcionalidade entre grupos Aptos e Ociosos contribui diretamente
para a resiliência estrutural da rede, uma vez que a reorganização necessária após uma
falha torna-se mínima e localizada. Dessa forma, a rede consegue se recuperar mais ra-
pidamente, preservando seu funcionamento sem exigir alterações profundas na topologia
ou realocação massiva de nós.

Figura 7. Distribuição dos agrupamentos para diferentes quantidades de dispositivos IoT.

A Figura 8 apresenta o número de nós que precisaram ser realocados após a falha
de enlace. Nos cenários com 100 e 150 dispositivos, a média de realocação permaneceu
entre 8 e 9 nós, enquanto no cenário com 200 dispositivos esse valor aumentou para apro-
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ximadamente 17 nós. Esse crescimento é esperado e proporcional ao tamanho da rede,
uma vez que clusters maiores tendem a concentrar mais nós dependentes do líder cujo
enlace foi comprometido. Apesar do aumento absoluto, a realocação permanece restrita
ao cluster afetado, sem demandar reestruturações globais na topologia. Esse comporta-
mento evidencia que o sistema escala de maneira eficiente, garantindo que o impacto da
falha seja contido e que a intervenção necessária permaneça localizada, mesmo em redes
de maior porte.

Figura 8. Quantidade de nós realocados após a falha do enlace entre o líder e o AP.

6. Conclusão
Este trabalho apresentou uma metodologia baseada em Aprendizado por Reforço

(AR) para aprimorar a resiliência de redes IIoT sujeitas a falhas de enlace. A solução
fundamenta-se em uma topologia de clusters dinâmicos, que permite ao agente identificar
interrupções na conectividade e reagir de maneira inteligente e adaptativa. Os resulta-
dos demonstram que a adaptação dinâmica da topologia, combinada à tomada de decisão
autônoma do agente, mantém a continuidade do serviço mesmo diante de falhas, redireci-
onando eficientemente as demandas de comunicação por rotas alternativas e preservando
o funcionamento global da rede. Esse mecanismo de reconfiguração fortalece a opera-
ção resiliente da IIoT ao possibilitar ajustes estruturais sem intervenção humana e com
impacto mínimo na execução das tarefas industriais. A fase preliminar de simulações va-
lidou a viabilidade da abordagem e evidenciou seu potencial para aplicação em cenários
industriais mais complexos. Como trabalhos futuros, pretende-se aumentar a fidelidade
do ambiente utilizando o simulador NS-3, aperfeiçoar o agente de AR para lidar com múl-
tiplos tipos de falhas e condições adversas, avaliar seu desempenho em topologias mais
densas e heterogêneas, e explorar implementações práticas que aproximem a solução de
contextos industriais reais.
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