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Abstract—Electronic Design Automation (EDA) tools are soft-
ware applications used by engineers in the design, development,
simulation, and verification of electronic systems and integrated
circuits. These tools typically process specifications written in
a Hardware Description Language (HDL), such as Verilog,
SystemVerilog or VHDL. Thus, effective testing of these tools
requires programs written in these languages. This work presents
ChiBench, a curated benchmark suite comprising more than 50K
programs mined from open-source repositories. Additionally, this
work also introduces ChiGen, a tool which synthesizes Verilog
programs from scratch based on a probabilistic language model,
thereby increasing the number of available inputs for testing.

Index Terms—benchmark, verilog, testing, program synthesis

I. INTRODUCTION

EDA (Electronic Design Automation) tools are software ap-
plications used by engineers in the design, development, sim-
ulation, and verification of electronic systems and integrated
circuits (ICs). EDA tools cover various stages of the electronic
design process, from conceptualization and design entry to
implementation, verification, and testing. These tools operate
on similar types of input data: programs in some Hardware
Description Language (HDL), such as Verilog, SystemVerilog,
VHDL or SystemC. Thus, the effective development and
testing of such tools require programs in these languages.

A Benchmark Suite is a collection of programs used to
test computing systems that process such programs. There
exist open source benchmark collections tailored for EDA
tools, such as the ISCAS Benchmark Circuits [1] (31 circuits),
the EPFL Combinational Benchmark Suite [2] (23 circuits),
the RAW Benchmark Suite [3] (12 programs), the KOIOS
collection (19 circuits implementing different neural networks)
and the Titan23 suite of 23 circuits [4]. These collections
contain a small number of programs: typically less than
50. This fact is unfortunate because, in the words of Wang
and O’Boyle [5]: “Although there are numerous benchmark
sites publicly available, the number of programs available
is relatively sparse compared to the number that a typical
compiler will encounter in its lifetime.”

This work mitigates the aforementioned problem with two
different contributions. First we introduce ChiBench, an open
collection of 50K Verilog programs, mined from open-source
GitHub repositories. ChiBench is a much larger collection of
programs when compared to existing benchmark suites. It has

also been filtered using existing EDA tools, in order to select
programs which are syntactically and semantically valid.

Along with ChiBench, we also introduce ChiGen, a tool
which can synthesize Verilog programs based on an n-gram
probabilistic language model. Thus, ChiGen can be used to
generate realistic programs from scratch and increase the
number of available inputs for testing EDA tools.

II. RELATED WORK

Random synthesis of inputs for testing has existed for at
least three decades [6]. The generation of HDL programs,
however, is a topic which has gained more popularity with
the rise of large language models (LLMs) [7, 8, 9]. Although
LLMs excel at generating syntactically and semantically valid
code, they are more usually applied in the context of code
completion. Thus, instead of generating a random Verilog
program from scratch, they can produce test cases for an
existing design [8], or even complete a Verilog module based
on its specification [7]. Nevertheless, the automated generation
of unseen random Verilog programs for testing, which ChiGen
aims to do, is still a problem which has not been solved to
the best of our knowledge.

We have already mentioned in Section I the lack of extensive
benchmark suites formed by hardware specification languages.
However, this scenario has also seen changes in recent years
due to the rising popularity of LLMs. As an example of this
new trend, at the end of 2023, Thakur et al. [7] released Veri-
Gen, a fine-tuned version of CodeGen [10] for the synthesis
of Verilog specifications. In the process of tuning CodeGen,
Thakur et al. have collected 50K Verilog circuits. However,
in contrast to ChiBench, the dataset used by Thakur et al.
has not undergone any form of filtering; hence, we do not
know if these programs are semantically valid. Neither they
are publicly available, what hinders a direct comparison with
ChiBench. Independent evaluations of VeriGen has found that
“A primary contributing factor to this shortfall [the inability
to uncover bugs in EDA tool] is the insufficiency of HDL code
resources for training” [10].



III. A CURATED COLLECTION OF VERILOG PROGRAMS

A. Mining Open-Source Programs

In order to build our Benchmark Suite, we have mined pro-
grams from open-source GitHub repositories, using GitHub’s
REST API1. We use GitHub’s API to build a list of candidate
Verilog repositories. Said list is sorted by popularity (measured
as the number of stargazers). We remove from the candidate
list repositories that are not available for public usage, due to
the lack of a license. Thus, for each repository R in the sorted
list, we have implemented a Python script that proceeds as
follows:

1) Clone R and locally copy all its .v files;
2) Assign a unique name to each .v file, based on its

repository, its local path, and the current number of
programs in ChiBench;

3) Remove any special characters from the file’s name to
avoid encoding issues.

We repeat the above sequence of steps for all the repositories
in the base list, until reaching a predefined number of files.
This threshold is set upon calling the mining script.

B. Curating the Data

After we have copied the necessary number of Verilog
files from GitHub, we proceed to select valid programs. To
this effect, we only keep files that are syntactically and
semantically valid. Thus, this process involves passing the
files through two sieves. The first sieve, the syntax analysis,
happens via the Verible’s syntactic analyzer. Verible2 is a suite
of Verilog/SystemVerilog developer tools, which includes a
parser and syntactic analyzer.

At this stage, if Verible’s parser cannot build an abstract
syntax tree for a file, we discard it. The program in Figure 1
would be filtered out by the syntactic filter. It contains a
missing semicolon at Line 7. Such syntactically invalid files
are uncommon in the mining process. Nevertheless, they occur,
as the repositories contain, for instance, files that are still under
development.

module counter (input clk, input rst,
  output reg [7:0] data);
  always @(posedge clk) begin
    if (rst || data == 8'hff)
      data <= 8'h00;
    else
      data <= data + 8'h01
  end
endmodule

01
02
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07
08
09

This program is 
syntatically invalid 
because it misses a 
semicolon at the end of 
line 7

Fig. 1. Specification filtered out by syntactic verification.

Once we remove any syntactically invalid programs, we
use the semantic analyzer available in the Jasper Formal

1Available at https://docs.github.com/en/rest
2Available at https://github.com/chipsalliance/verible

Verification Platform3 to filter out any semantically invalid
programs. Notice that Jasper’s HDL analyzer also rejects
invalid syntax. However, Jasper’s analyzer is more compu-
tationally expensive than Verible’s because it also considers
semantic analysis, being more restricted to Verilog language
standards. Consequently, in order to reduce the number of
programs sent for semantic analysis, we chose to filter out
syntactically invalid programs before using Jasper.

Figure 2 shows an example of a program that fails the
semantic sieve due to a type inconsistency. In this case, the
IEEE standard forbids the declaration of data ports with the
wire type. Our data generation process considers each file
independently, thus, this error might occur. Nevertheless, our
experience is that most Verilog programs can be successfully
validated as a single compilation unit.

module counter (
  input clk,
  input rst,
  output wire [7:0] data
);
  always @(posedge clk) begin
    if (rst || data == 8'hff)
      data <= 8'h00;
    else
      data <= data + 8'h01;
  end
endmodule
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This program is 
semantically invalid 
because the data port is 
declared with the wire 
type. However, the 
standard forbids using 
wire ports for 
procedural assignments 
(assignments within 
procedural blocks, like 
always)

Fig. 2. Verilog specification that fails the semantic test.

C. Use Cases

As a proof of concept on how to use such a benchmark suite,
we have used ChiBench to test different EDA tools. Namely,
we have tested Verible’s parser and code obfuscator, Yosys4,
Verilator5 and Icarus Verilog6. The methodology for these tests
was simple – we used each program in the collection as input
for each tool. Among programs which yielded non-zero exit
codes, we searched for any crashes or unexpected behaviors.
Under this methodology, we were able to find two bugs, which
have already been reported:

• https://github.com/chipsalliance/verible/issues/2159:
Verible’s code obfuscator crashed when reading a pro-
gram that only contains pragma directives. This bug has
not been fixed as of July 2024.

• https://github.com/verilator/verilator/issues/5276:
Verilator crashed when running for a program with long
lines. This bug has also not been fixed as of July 2024.

Nevertheless, the usage of ChiBench is not limited to
directly testing EDA tools. As mentioned in Section II, such

3Available at https://www.cadence.com/en US/home/tools/
system-design-and-verification/formal-and-static-verification.html

4Available at https://github.com/YosysHQ/yosys
5Available at https://github.com/verilator/verilator
6Available at https://github.com/steveicarus/iverilog
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a large collection of programs may be invaluable for training
machine learning models.

IV. PROBABILISTIC SYNTHESIS OF VERILOG PROGRAMS

A. Overview

ChiGen’s main goal is to stochastically generate random
Verilog programs in order to enrich the variety of inputs
for testing EDA software. The tool was implemented using
C++20, with nlohmann/json7 and cxxopts8 as depen-
dencies. Figure 3 provides an overview of how it works.

The process for randomly producing a program was based
on the concept of n-gram language models, which will be
further explained in Section IV-B. Such a language model
needs a large corpus of Verilog programs, from which it
can estimate probabilities for each program construct, such
as modules and always blocks. We have built ChiBench for
this exact purpose.

With the probabilities of each construct in hand, all there
is left is to synthesize the program. Programs generated by
ChiGen are syntactically valid from their inception. However,
there is still need to enforce semantic correctness. This is the
role of semantic analysis, which is detailed in Section IV-E.

ChiBench Offline

ChiGen

Syntax Tree
Verilog 

program
Semantic 
Analyzer

N-gram
production rule 

count

N-gram
production rule 

probabilities

Fig. 3. An overview of ChiGen.

B. N-gram Language Models

In the context of Natural Language Processing, a language
model assigns probabilities to upcoming words, or sequences
of words, in a sentence [11]. An n-gram language model
assumes that the probability of a given word is conditioned by
the n previous words in the sequence. This concept is useful
because it is a primitive way to model context: the likelihood
of a word depends on the context which precedes it.

Therefore, we want to use this idea for synthesizing Verilog
programs with the aim of producing more realistic programs.
However, since we reason about programs, not sentences, we
cannot deal with words. Instead, we assign probabilities to
production rules in Verilog’s grammar.

7Available at https://github.com/nlohmann/json
8Available at https://github.com/jarro2783/cxxopts

In order to better understand this idea, think about the
syntax tree. Each production rule corresponds to a node in
the program’s syntax tree. Thus, ChiGen’s language model
synthesizes a Verilog syntax tree by assuming that the prob-
ability for the next production rule depends on its n closest
ancestors in the tree. Figure 4 shows an example of how this
idea works.

(a) (b)

E ::= T + E
    |  T
T ::= <num> * T
    |  <num>

E

T

T

?1

P(?1 | T, E, E) P(?2 | E, E, E)
?2

<num>

E

E

Fig. 4. (a) Simple grammar definition. (b) Example of the definition of
probabilities for the next production rules in a 3-gram setting. Notice that
?1 and ?2 could be sequences of rules, instead of a single rule.

Based on this concept, we can use a large corpus to compute
probabilities for each production rule in Verilog’s grammar,
and for a given context size. Section IV-C further explains the
process for computing probabilities.

The computed probabilities can then be used with a simple
algorithm to stochastically synthesize Verilog syntax trees.
Algorithm 1 illustrates it.

Algorithm 1 Algorithm for synthesizing a syntax tree using
n-grams
Input: n, probability distribution
Output: Head of synthesized syntax tree

1: head← starting production rule
2: stack← {head}
3: while stack ̸= ∅ do
4: nextRule← stack.pop()
5: context← getContext(nextRule,n)
6: productions ← next production rules randomly

chosen based on the probabilities for context
7: for all production in productions do
8: stack.push(production)
9: nextRule.addChild(production)

10: end for
11: end while
12: return head

C. Calculating Probabilities

In order to compute probabilities for production rules, we
need a large corpus of Verilog programs, from which we can
count the number of times we see each production rule. This
will give a good estimate of how likely a production rule
is in a given context. Although ChiBench has proven useful
for other purposes, it was originally conceived for computing
probabilities for ChiGen.

https://github.com/nlohmann/json
https://github.com/jarro2783/cxxopts


We have used Verible’s parser as a means to obtain all the
production rules which are generated for a program. This is
possible by using the trace of Verible’s parser, which outputs
production rules in the order in which they are processed. This
allows us to count how many times a rule appears and, since
they appear in a well-defined order, we can also get the context
of where a rule appears. Thus, we can count the number of
times that each rule appears given the context of n preceeding
rules.

Once we know how many times each production rule
appears in a given context, the process for computing the
probability for the next production rule given the current
context is simple. For each possible context, we check what
are the possible production rules and what are their counts.
The count of a production rule then serves as a weight
for the computation of a discrete probability distribution.
Consequently, the sum of probabilities for the next possible
production rules in a given context is 1.

One of the drawbacks of using the trace of Verible’s parser
is that it may be very long for large programs. Therefore, this
process could take dozens of hours for a very large set of
programs such as ChiBench. Fortunately, this process can be
done offline, since we do not have to recount the occurrences
of production rules in the dataset every time we want to
synthesize a new program.

We have implemented a Python script which applies this
idea of using Verible’s parser to count the occurrences of
production rules for a given program and a context size n.
The script outputs a JSON file, which stores how many times
a set of production rules appears in a specific context. After
we have applied this script for every program in our dataset,
the JSON file with the accumulated counts is then used as
input for ChiGen, which will use it to compute probabilities
as described earlier.

D. Building a Syntax Tree

Once ChiGen has computed probabilities using the input
JSON file, it can synthesize a Verilog syntax tree using
Algorithm 1. We have implemented Verilog’s syntax tree in
ChiGen’s code, based on the production rules used by Verible’s
parser.

Notice that, because the nodes in the syntax tree are
synthesized based on a valid Verilog grammar, it is impos-
sible that a production rule is used where it is syntactically
invalid. Therefore, the syntax trees synthesized by ChiGen are
syntactically correct by definition.

E. Semantic Correctness

Although syntax trees synthesized by ChiGen are always
syntactically correct, there is still need to enforce semantic
correctness. After all, a syntactically valid program may con-
tain semantic errors, as shown in Figure 2.

We have taken two different approaches with the purpose of
increasing semantic correctness of synthesized programs. The
first approach involved changes in Verible’s grammar, so that
some semantically invalid patterns would be rejected during

parsing. This was applicable in two situations: to avoid mixed
ANSI and Non-ANSI Port Declarations, and to avoid mixed
named and positional port connections. Figure 5 shows an
example of such a situation. Therefore, ChiGen works with a
modified version of Verible’s parser, which guarantees that it
does not recognize such programs as syntactically valid.

01  module counter (
02      output reg [7:0] data,
03      clk,
04      rst
05  );
06    input clk;
07    input rst;
08    always @(posedge clk) begin
09        if (rst || data == 8'hff)
10          data <= 8'h00;
11        else
12          data <= data + 8'h01;
13        end
14  endmodule

This port declaration 
uses ANSI style

These ports use 
non-ANSI style

Fig. 5. The first port in this module uses ANSI style for port declarations,
whereas the other two use non-ANSI style. The IEEE standard does not allow
such mixing, and therefore this program is semantically invalid.

The second approach is applied directly to the synthesized
syntax tree. This is necessary whenever we need to change
values in the synthesized programs to make them semantically
correct. For instance, the initially synthesized tree does not
contain any valid identifiers or literals, only placeholders.
Thus, we must replace these placeholders with actual values.
We also have to ensure that an identifier is not used before it
is declared, which must be taken into account when updating
the tree. These semantic analyses and actions was implemented
with the use of the Visitor design pattern [12], which allows
to easily define operations to be applied to different subclasses
in the tree structure.

Although these approaches increase the percentage of se-
mantically valid programs we can synthesize, there is still
much room for improvement. Achieving a 100% ratio of
valid programs is very difficult when dealing with stochasti-
cally synthesized programs. However there are other kinds of
analyses that which be implemented to enhance the semantic
correctness of programs synthesized by ChiGen. For example,
a type checker could greatly improve semantic correctness, by
preventing the use of identifiers in contexts where their type
is not allowed.

F. Use Cases

We have tested different EDA tools with programs syn-
thesized by ChiGen to demonstrate its usefulness, as we did
with ChiBench. Verible’s code obfuscator, parser, and code
formatter were included in this process. The methodology
was similar to what we described in Section III-C – we used
synthesized programs as inputs and looked for any crashes.



We have observed two bugs, and both have been reported to
Verible’s community:

• https://github.com/chipsalliance/verible/issues/2181:
Verible’s parser crashed instead of reporting syntax errors
related to instantiation type. This bug has already been
fixed in newer versions of Verible.

• https://github.com/chipsalliance/verible/issues/2189:
Verible’s code formatter crashed when dealing with a pro-
gram with a variable of type output logic signed.
This bug has not been fixed as of July 2024.

V. CONCLUSION

This paper has described two different approaches which
aim to improve the availability of inputs for testing EDA tools.
The first, ChiBench, is a curated collection of 50K Verilog
programs mined from open-source repositories. The second,
ChiGen, is a tool for probabilistic synthesis of Verilog pro-
grams based on an n-gram language model. In addition to ex-
plaining the methodology behind each approach, this paper has
also demonstrated their usefulness by showing different bugs
which were found in popular EDA tools using programs taken
from ChiBench and ChiGen. Both ChiBench and ChiGen are
publicly available at https://github.com/lac-dcc/chimera.

As mentioned in Section IV-E, there is still room for
improvement in the semantic analyzer module of ChiGen.
Thus, future work should involve developing new approaches
for enforcing semantic correctness, such as a type analyzer.
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