
Lushu: Obfuscating Sensitive Data via Language Recognition
Alexander T. M. Holmquist1

1 Federal University of Minas Gerais (UFMG)

Abstract. The synthesis of grammars to recognize sentences from examples is a
problem that has several practical applications, including the identification and
encryption of sensitive information in computer systems. Existing techniques
tend to create very large grammars, having a number of terminals symbols pro-
portional to the number of words in the example sentences. This work proposes
a technique to merge grammar terminals into regular expressions. The tech-
nique uses a lattice built from a partial ordering of regular expressions. This
lattice, and the language identification algorithm it entails, were used to build
Lushu, a data protection tool that encrypts sensitive information produced by
the Java virtual machine. A comparison between Lushu and Zhefuscator,
a tool of similar purpose, demonstrates that the technique proposed in this work
is not only efficient in terms of time, but also in space, producing grammars up
to 10 times smaller than the current state of the art.

1. Introduction
Language Recognition from Examples (LRE) is a classic problem in computer science.
Given a set of sentences (henceforth called examples), we must find a grammar that rec-
ognizes them. LRE has two versions, varying based on the cardinality of the set of exam-
ples. If the set can contain infinitely many examples, then the problem is called Language
Recognition at the Boundary. [Gold(1967)] demonstrated that this version of LRE is un-
decidable, even for restricted classes of languages such as regular languages. On the other
hand, if the set of examples is finite, then LRE has a trivial solution: the sentences can
be arranged in a prefix tree (as in [Huffman(1952)]). A solution to the finite problem can
be used to approximate a solution to the infinite problem: given a sample of examples, a
trivial grammar is built to recognize that language. When new examples are found, the
grammar is updated.

Although trivial grammars can be constructed to recognize finite sets of sentences,
these grammars tend to be large. The minimization of such grammars is a computation-
ally difficult problem (PSPACE) [Meyer and Stockmeyer(1972)]. Thus, trivial grammars
tend to use a number of terminal symbols proportional to the number of different strings
contained in the examples. This work proposes a mechanism to reduce these grammars.
The idea of this work is to use lattices—algebraic structures built on partial orders—to
group strings into tokens. The proposed technique finds common structures among regu-
lar expressions, using, for that purpose, a domain-specific language that defines lattices.
The regular expressions are built gradually, from the observation of examples. The pro-
posed algorithm approximates the target language incrementally. Thus, new examples
can be used to augment current grammar.

Application: Obfuscation of Sensitive Data. To demonstrate that the language iden-
tification algorithm proposed in this work is useful, we will show how to use it to build

a sensitive data encryption system. For that purpose, this work expands on the recent
work by [Saffran et al.(2021)]. In 2021, [Saffran et al.(2021)] proposed a system for en-
crypting sensitive database logs. This system intercepts Java virtual machine (JVM) calls
that produce strings, and creates a grammar that recognizes the language formed by all
these strings. Users can mark parts of sentences that are confidential. The markup func-
tionality allows the grammar to recognize sentences defined as secrets, and encrypt such
sentences before they are published. The grammars produced by [Saffran et al.(2021)]’s
tool (the ZheFuscator) grow quickly: they suffer from the aforementioned expansion
problem. The technique proposed in this work, however, keeps this growth under control.
It groups terminal symbols into regular expressions, which can be gradually updated as
more examples are seen.

Results. A tool analogous to Zhefuscator has been implemented. The tool, called
Lushu, intercepts JVM calls, and encrypts sensitive information present in strings is-
sued by such calls. The interception process is invisible to users: it does not require
program recoding, and has a low performance impact, as Section 4 will show. Lushu
users must specify, via a YAML description, a partial order between regular expressions.
Lushu uses this specification to build a lattice: the structure used to merge tokens into
regular expressions. The current implementation of Lushu is similar to its original in-
spiration, Zhefuscator, in terms of performance: both tools cause a statistically neg-
ligible performance on the systems they decorate. However, as will be seen in Section 4,
Lushu produces grammars that can be up to 10 times smaller than those produced by
Zhefuscator to recognize the same language.

2. Overview

The ideas presented in this work arose from a practical problem, which exists in the
context of a data security company, Cyral Inc1. This problem consists of obfuscating
personal data contained in database logs. In order to motivate the work, this section
explains this problem, and relates it to a theoretical one: the identification of infinite
languages.

2.1. Data Protection Laws

Recently, personal data processing regulations were created. As an example, we have the
GDPR [GDPR(2018)] in Europe, the LGPD [Lei Geral de Proteção de Dados(2018)] in
Brazil, and the CCPA [CCPA(2020)] in California. These laws are not identical. Each law
adapts to the needs of the region it encompasses. However, there is at least one consistent
requirement: companies that hold data personal data shall protect the privacy of such data.
This requirement is a challenge to fulfill for two reasons:

1. Data is manipulated by complex systems which were already in production before
the laws started being enforced.

2. Data can be manipulated as untyped strings. In this context, it is not simple to
distinguish what is sensitive data and what is not.

1https://cyral.com/

https://cyral.com/

Log

Encryption
Storage

Encrypted
Log

Log
Producer

Language
Recognition

Encryption Key

Encrypted
Log

Grammar + sentences

17h23:54 from 192.158.1.38 (*.iberia.es) by 142.606.227-30

17h23:54 from_0x8C22434E_(*.iberia.es) by_0x295C3665_

A
ud

ito
r

A
dm

in
Figure 1. Obfuscation of log records in database systems. The log producer is
seen as an automaton capable of producing sentences indefinitely.

2.2. Log Producers
Database systems, in general, produce reports that can be analyzed by administrators or
information auditors. These systems periodically send logs to a log collector. There are
specialized tools to dispatch and collect these logs: Fluentd [Fluentd(2023)], Logstash
[Logstash(2023)], etc. Usually the final destination of the logs is an analysis tool like
Splunk [Splunk(2023)], Sumo Logic [Sumo Logic(2023)] or Datadog [Datadog(2023)].
System administrators and data analysts use these logs to make decisions.

Every log has an origin: an application such as a database server. After the ap-
plication issues a log, it goes through several paths, called data paths, until it reaches the
hands of the analysts. Logs often contain sensitive data. Data protection laws require that
the privacy of these records be preserved, either in its final form (as seen by the analyst),
or in the data path, or even in the source (application). In other words, a database admin-
istrator, as opposed to an accredited auditor, should not have access to personal data. The
ideas of this work can be used to obfuscate sensitive data in the source. Figure 1 illustrates
this operation.

2.3. From Logs to Infinite Languages
In this work, a log producer is seen as an automaton capable of generating an infinite
number of sentences. Sentences are sequences of strings (also called tokens). A system
that encrypts sensitive information produced by such a producer needs to solve three
challenges, namely:

Specification: Users need to be able to determine which tokens, within a sentence, con-
tain private data. This specification must be sensitive to the context of the sen-

tence, because tokens described in a similar format may, in certain contexts, be
confidential, and in others, be public.

Identification: the encryption system needs to be able to recognize the language formed
by all the sentences issued by the log producer, so that confidential information
may be recognized in the suitable contexts.

Compression: the growth of the grammar used to recognize the language of logs needs
to be controlled, otherwise an explosion in the number of production rules may
compromise execution time and memory consumption of the system being pro-
tected.

Solutions to the problem of distinguishing secrets in their context already exist in
the literature. This work adopts the approach proposed by [Saffran et al.(2021)]: users
use a text markup language for specifying sensitive information in examples of logs, and
grammars in the Heap-CNF format are used to approximate the language used by the log
producer to emit sentences. Heap-BNF are regular grammars which have a number of pro-
duction rules linear on the size of the largest sentence produced by the log producer. Such
grammars contain a terminal for each different symbol emitted by the producer. To avoid
an explosion of the number of symbols, [Saffran et al.(2021)] defines a system of prim-
itive types formed by integers, floating point numbers and alphanumeric strings. Users
can specify the context in which tokens should be wrapped in such general categories, and
the context in which tokens form tokens independent terminals. Still, grammars can grow
quickly, for these contexts do not capture all types of noise, as will be seen in Section 4.
The aim of this work is to further compress such grammars. The next section explores
these ideas.

3. The Lushu System

The purpose of this section is to show how the abstract vision depicted in Figure 1 can
be implemented on the Java Virtual Machine (JVM). Figure 2 provides a more concrete
version of Figure 1. The tool shown in Figure 2 is called “Lushu”. To attach Lushu
to applications, one just needs to add a Java class defined in the Lushu bytecode which
extends java.io.PrintStream. This class can be distributed as a Jar package,
and requires minimal source code change. This methodology works at the level of Java
bytecodes, and has some virtues:

1. Does not require knowledge of source code: applications are instrumented as
black boxes.

2. Can be used on applications written in any language that runs on top of the JVM
besides Java: Kotlin, Scala, Groovy, etc.

3. No Java programming required: sensitive data are marked via examples, the lattice
is derived from a list of tokens and the classes that comprise Lushu are invisible
to users.

3.1. Regular Expression Lattice

The main idea of this work is to use a semilattice to merge strings into regular expressions.
A semilattice is an algebraic structure, built around a partially ordered set (poset), which
we define as follows:

JVM

Log producer

Lushu.out Lushu.learner Lushu.cypher

Tokens
(defined via DSL)

Lattice - Sec 3.1 Encrypted Output

Secrecy - Sec 3.2
(Defined via markup language)

Key
(user-defined)

Figure 2. Integration between Lushu and the Java Virtual Machine.

Definition 1. Let S be a partially ordered set based on the ≤ relation. We define the
semilattice ⟨S ∪ {⊤},∨⟩, such that:

• For every pair {e0, e1} ⊆ S, (e0 ∨ e1) ∈ S is the least upper bound of e0 and e1,
that is:

– e0 ≤ e0 ∨ e1
– e1 ≤ e0 ∨ e1
– if e0 ≤ e e e1 ≤ e, then e0 ∨ e1 ≤ e

• e ≤ ⊤, for any element e ∈ S

Example 1. The set of regular languages S = {[a- z]+, [0-9]+, [a- z0-9]+}, plus the
operator ∨ (character union in regular expressions – see Definition 2) forms a lattice.
[a-z]+ ∨ [0-9]+ = [a-z0-9]+, and that ⊤ = [a-z0-9]+.

Lushu users do not interact with lattices directly. Instead, they define the set of
regular expressions S that can be used to build tokens. Every regular expression E in S
has two constraints:

1. E = [c1c2 . . . ck]{l, u}, where each ci, 1 ≤ i ≤ k is a character, and {l, u} ∈
N, l ≤ u, is the range of acceptable sizes.

2. If E0 and E1 are regular expressions in S, then the intersection of characters rec-
ognized by E0 and E1 is empty.
Example 2 demonstrates such a set. Note that Lushu users only need to define S.

The least upper bound operation is defined as follows:

Definition 2 (Least Upper Bound). Let E0 = [a1 . . . ak] {l0, u0} and E1 = [b1 . . . bk]{l1, u1}.
We define E0∨E1 = [a1 . . . ak b1 . . . bk]{l, u}, where l = min(l0, l1) and u = max(u0, u1).

Example 2. Figure 3 (a) shows the definition of a set of four regular expressions. Each
regular expression is made up of a set of characters plus a range of possible lengths that
these expressions can have. For example, the first expression, alpha, denotes any sequence
of one to eight lowercase letters. For simplicity, Figure 3 omits the sublattices formed by
subsets of alpha and Alpha with different size ranges. The sublattice of digit is shown in
full.

3.1.1. Heap-CNF Grammars

Lattices enable us to merge tokens of a trivial grammar into regular expressions. This
process will be explained via a series of examples. The first example shows what a trivial

[a-zA-Z.;,/:0-9]+

[a-zA-Z0-9]+

[a-zA-Z]+ [a-z0-9]+ [A-Z0-9]+

[a-z]+ [A-Z]+

[.;,/:]+

[0-9]+

[0-9]{1,3}

[0-9]{1,2} [0-9]{2,3}

[0-9]{1} [0-9]{2} [0-9]{3}

alpha sublattice

digit sublattice

Alpha sublattice

Sets:

alpha= [a-z]{1,8}

Alpha= [A-Z]{1,8}

Punct= [.;,/:]

digit= [a-z]{1,3}

Widen:

Punct: [alpha,Alpha,digit]

(a)

(b)

U
se

r
sp

ec
if

ic
at

io
n

Figure 3. Lattice that recognizes CPF numbers and IP addresses.

grammar is and why it grows so fast.

Example 3. Figure 4 (b) shows the trivial grammar produced to recognize the two sen-
tences seen in Figure 4 (a). Note that a terminal is created for each token. In other words,
no attempt is made to join tokens into regular expressions. Figure 4 (c) shows the corre-
sponding grammar that would be produced by the Zhefuscator [Saffran et al.(2021)]
tool. This tool recognizes some primitive types, such as integers and floating point num-
bers. In this case, the first two tokens, 7282 and 7283, are grouped as instances of the
integer type.

The grammars shown in Example 3 follows a known format called Heap-CNF
(Heap-Chomsky Normal Form) [Saffran et al.(2021)]. Lushu recognizes grammars in
this format. Grammars in Heap-CNF format are trivial grammars that recognize a set
finite number of L sentences. Tokens at position k, k ≥ 1, of sentence L are recognized
from the non-terminal R2k. To keep this work self-contained, Definition 3 revisits this
concept.

Definition 3 (Heap-CNF ([Saffran et al.(2021)])). A Heap-CNF grammar of height n has
the following non-terminal symbols: R0, R1, . . . , R2n−2, R2n−1, and production rules that
match one of the following three patterns, where the symbol ax is a wildcard for any
terminal:

1. R2k ::= a1 | a2 | . . . | ap se k < n
2. R2k−1 ::= R2k R2k+1 | ϵ

7282 1:15 May 1st

7283 10:25 05 2nd

R1 ::= R2 R3
R2 ::= `7282` | `7283`
R3 ::= R4 R5
R4 ::= `1:15` | `10:25`
R5 ::= R6 R7
R6 ::= `May` | `5`
R7 ::= `1st` | `2nd`

R1 ::= R2 R3
R2 ::= <Digit>{4,4}
R3 ::= R4 R5
R4 ::= <Digit>{1,2}
R5 ::= R6 R7
R6 ::= <Punct>+
R7 ::= R8 R9
R8 ::= <Digit>{2,2}
R9 ::= R10 R11
R10 ::= xx
R11 ::= R12 R13
R12 ::= <Digit>{1,1}
R13 ::= <Alpha>{2,2}

First log :

Second log :

(a)

(b) (c)

(d)

R1 ::= R2 R3
R2 ::= <int>
R3 ::= R4 R5
R4 ::= `1:15` | `10:25`
R5 ::= R6 R7
R6 ::= `May` | `5`
R7 ::= `1st` | `2nd`

Where xx is <digit ∨ alpha ∨ Alpha>{2,3}

Figure 4. (a) Two sentences emitted by the log producer. (b) Trivial grammar
that recognizes the two sentences. (c) Grammar produced by Zhefuscator. (d)
Grammar produced by Lushu.

3. R2n−1 ::= a1 | a2 | . . . | ap

3.1.2. Using the Lattice to Merge Tokens

In the discussion that follows, S is the set defined by the Lushu user. In Figure 3 (a), this
set is formed by the four regular expressions mentioned in Example 2. The tool maintains
a Heap-CNF grammar G capable of recognizing all sentences issued by the log producer
up to the current point in time. Whenever a new sentence V is received, the following
actions take place:

1. The V sentence is partitioned into a list T of regular expressions in S.
2. T is merged into G via the lattice defined by S and the union operator for regular

expressions.

The remainder of this section describes these two actions.

Splitting Sentences We split sentence V into tokens using the lattice defined by the set
of regular expressions S. A token is defined as the longest sequence of characters that
compose a regular expression other than the top of the lattice. In other words, if v is
a contiguous sequence of characters from V that compose a token, v has the following
properties:

1. for each character c ∈ v, let s ∈ S be the expression that contains it. The expres-
sion that recognizes v is the least upper bound of all expressions s.

2. we define the interval e{l, u} as {|s|, |s|}, if l ≤ |s| ≤ u. Otherwise, we use e+.
3. adding one more character to v makes s the top of the lattice.

Example 4 illustrates this process.

Example 4. Figure 5 (a) shows how to partition the first sentence emitted by the log
producer in Figure 4. Each token in the target sentence can be represented via one of
the base sets seen in Figure 3 (a); except for the token May, because it contains both
lowercase and uppercase letters. In this case, the token is recognized by the least upper
bound of the sets alpha and Alpha.

7282

di
gi
t{
4,
4}

di
gi
t{
1,
1}

P
un
ct
{1
,1
}

di
gi
t{
2,
2}

di
gi
t{
1,
1}

al
ph
a{
1,
1}

1 : 15 May 1 st

7283 10 : 25 05 2 nd

di
gi
t{
4,
4}

di
gi
t{
2,
2}

P
un
ct
{1
,1
}

di
gi
t{
2,
2}

(d
ig
it)
{2
,2
}

di
gi
t{
1,
1}

al
ph
a{
1,
1}

di
gi
t{
4,
4}

di
gi
t{
1,
2}

P
un
ct
{1
,1
}

di
gi
t{
2,
2}

where xx = (alpha∨ Alpha∨ digit){2,3}

di
gi
t{
1,
1}

al
ph
a{
1,
1}xx

where ww = (alpha ∨ Alpha){3,3}

ww

(a)

(c)

(b)

Figure 5. (a-b) Partitioning sentences into tokens using the lattice seen in Fig-
ure 3 (b). (c) Final tokens, obtained via least upper bound operations.

Merging Sentences After a sentence is received and partitioned into tokens, it needs to
be incorporated into the current grammar. Generally speaking, this operation is equivalent
to applying a reduction on all sentences issued by the log producer up to a given moment.
The reduction operation consists of applying the least upper bound operation, token by
token. The next example illustrates such an operation.

Example 5. Figure 5 (c) shows the regular expressions that result from joining the regu-
lar expressions in Figures 5 (a) and (b). Figure 6 shows the grammar that recognizes the
concatenation of all the regular expressions in Figure 5 (c).

3.1.3. The Widening Operation

It is desirable that some join operations lead directly to the top of the lattice, rather than
following the Definition 2. For example, users might want the string 1:15 to be recog-
nized as the concatenation of three regular expressions, namely: digit{1, 1}Punct{1, 1}

digit{4,4}

digit{1,2}

Punct{1,1}

digit{2,2}

(alpha ∨ Alpha ∨ digit){2,3}

digit{1,1}

alpha{2,2}

R1 ::= R2 R3

R2 ::= <Digit>{4,4}

R3 ::= R4 R5

R4 ::= <Digit>{1,2}

R5 ::= R6 R7

R6 ::= <Punct>+

R7 ::= R8 R9

R8 ::= <Digit>{2,2}

R9 ::= R10 R11

R10 ::= (alpha ∨ Alpha ∨ digit){2,3}

R11 ::= R12 R13

R12 ::= <Digit>{1,1}

R13 ::= <Alpha>{2,2}

1

2

3

4

5

6

7

Figure 6. Process of building a Heap-CNF grammar that recognizes the concate-
nation of several regular expressions.

digit{2, 2} instead of the regular expression (digit ∨Punct){4, 4}. We must prohibit the
combination of the expressions digit and Punct. Lushu allows users to specify forbidden
joins via a widening operation. The Widen block of a specification indicates which joins
lead directly to the top of the lattice. Example 6 illustrates the semantics of this block.

Example 6. Figure 3 (a) contains a Widen block. This block indicates that the least
upper bound of Punct and any another regular expression is the top of the lattice. Thus,
elements like [a−z.; / :]+ (which would be alpha∨Punct) do not exist in the lattice seen
in Figure 3 (b).

3.2. Marking Sensitive Data

The Lushu user determines tokens that should be obfuscated from log examples. With
an example in hand, the user uses pairs of XML elements of the type <s> and <\s> to
delimit sensitive tokens. Any substring between <s> and <\s> is considered sensitive,
as long as it appears in the position where the marked text is located. This step takes place
before activating Lushu on the virtual machine Java. Once activated, any occurrences of
tokens with the specified format are encrypted. If tokens of this type are merged into a
more complex expression, any string recognized by this new super expression will also
be encrypted. Example 7 illustrates the example markup Lushu needs to obfuscate the
log seen in Figure 1.

Example 7. Figure 7 shows text with Lushu markup. This markup determines that reg-
ular expressions in the format of CPF numbers and IP addresses must be obfuscated, but
only when they occur as the third and fifth words of sentences. Thus, if a CPF number
occurs as the second token of a log (which happens in logs of type DEBUG), then that CPF
number will not be encrypted.

4. Evaluation
The purpose of this section is to discuss the four research questions below, where “deco-
rated system” is the JVM instance whose output is intercepted by Lushu:

User secrecy markup on examples:

Original text emitted by JVM:

7282, from <s> 631-306-734/74 </s> at <s> 192.158.1.38 </s>

DEBUG 127.0.0.1 7283, from <s> 631-306-734/74 </s>

15278, from 435-249-572/77 at 192.158.1.38

15279, from 165-022-110/03 at 74.199.177.134

DEBUG 127.0.0.1 15280, from 74.199.177.134

Text emitted by JVM after being obfuscated by Lushu :

15278, from 0x83740293 at 0x88293874

15279, from 0x36838473 at 0x3A8D75E9

DEBUG 127.0.0.1 15280, from 0x3A8D75E9

Figure 7. Markup and obfuscation of sensitive information.

QP1: What is the impact of Lushu on the execution time of the decorated system?
QP2: What is the impact of Lushu on the memory consumption of the decorated sys-

tem?
QP3: How effective is Lushu for compressing grammars, when compared to its prede-

cessor, Zhefuscator?
QP4: How fast does the Lushu grammar converge, when given real database logs?

Software: JVM version: 17.0.6. Kotlin Version: 1.7.10. Operating system: Ubuntu
20.04.6 LTS. PostgreSQL Version: 14.7.

Hardware: CPU: Intel i7-1065G7 @ 3.90GHz, 4 cores. Primary Memory: Samsung,
16GB @ 3200 MT/s.

Benchmarks: This section uses two benchmarks: a program that generates random logs
(henceforth random log generator), and real logs produced by PostgreSQL. The random
log generator is capable of producing 1,858,950 different permutations of a predefined set
of words. Each log contains a CPF number, a date, a timestamp, a random integer, or a
combination of these.

Example 8. Examples of logs emitted by the random log generator:

A new product review was submitted by Nathan
on 2023-05-10 22:18:34.

An order was placed by customer WDTPAPuv on
2023-05-10 22:18:34.

A new message was received from Mason on
2023-05-10 22:18:34.

The user 219.260.870-06 deleted their
account on 2023-05-10 22:18:34.

The PostgreSQL logs allow us to evaluate Lushu in a more realistic scenario.
These logs were generated while running the pgbench tool against the database. pgbench
emulates the activity of a real database2. Although the records that make up these logs

2https://www.postgresql.org/docs/current/pgbench.html (May 15th, 2023).

https://www.postgresql.org/docs/current/pgbench.html

can have an arbitrary number of tokens, their format is less diverse than the random logs.
Example 9 shows some records.

Example 9. Examples of the contents of actual log in PostgreSQL logs format:

statement: UPDATE pgbench_accounts SET abalance
= abalance + -1147 WHERE aid = 28677;

statement: SELECT abalance FROM pgbench_accounts
WHERE aid = 52176;

duration: 0.081 ms

4.1. QP1: Execution Time

To measure the impact of Lushu on decorated applications, we measured its performance
over a JVM instance that only prints logs, without any further processing. The number of
records issued is a parameter. In this experiment, the number of logs produced by each
run varies between 100 and 106. In this setup, the JVM instance is fully dedicated to
emitting logs: no processing takes place between issuing one record and the next.

Discussion: Figure 8 compares the execution time of different applications, with and
without the interception performed by Lushu. The running times shown are the arith-
metic mean of the times measured in 10 independent runs. The running time tends to grow
linearly with the number of logs. Applications whose logs are intercepted by Lushu are
slower. However, this impact is only noticeable if the application outputs many logs in
a row—an unlikely scenario for most real applications. The increasing distance between
the curves is probably due to buffering effects, and does not seem to be related with the
computational cost of Lushu.

4.2. QP2: Memory Consumption

This experiment is similar to the one described in Section 4.1, except that we measure
primary memory consumption instead of execution time. The memory reported in this
section is the difference between the memory reserved for the Java process (Runtime.
totalMemory()) and the memory reserved for object allocation (Runtime.free
Memory()). The numbers obtained are the average of ten samples. Before each sample,
the JVM’s garbage collector is invoked.

Discussion: Figure 9 shows the impact of Lushu on memory consumption. The impact
of Lushu is remarkable; however, it is constant in the two sampled scenarios. Memory
consumption grows only 2% between issuing one and a million logs, becoming constant
after about one thousand records. The initial 2% growth is due to the growth of the
grammar used by Lushu.

4.3. QP3: Grammar Compression Rate

We compare the ability to compress grammars of Lushuwith its predecessor, Zhefuscator.
To simulate the behavior of Zhefuscator, we use a lattice that distinguishes sequences
of digits from other tokens. Thus, any characters from the alphabet, except numbers, is
not merged into regular expressions. In this experiment, we intercept 1 to 2001 records

Figure 8. Impact of Lushu interception in the execution time of the log producer.

issued by the random log generator. For each number of records, we compute the average
size of the Lushu grammar in ten different runs. The size of the grammar is measured as
the number of terminal symbols it contains.

Discussion: Figure 10 shows the size of the grammar (in number of terminals) gener-
ated by Zhefuscator and Lushu. Lushu’s grammar converges with less than 100
logs, while Zhefuscator’s grammar does not converge even after observing 2001
records. The grammar size of Zhefuscator after 2001 logs is more than 10 times
larger than that of Lushu. Zhefuscator convergence requires that all terminal symbols
are observed—a scenario that does not occur in this experiment.

4.4. QP4: Convergence Rate for Real Logs
Zhefuscator’s design was based on the premise that logs real tend to have a very well-
defined format. However in this case, the grammar produced by Lushu also converges
much faster. Consider, for example, the convergence rate in logs produced by pgbench
from PostgreSQL. After consuming 32 lines, Lushu produces a grammar with 69 non-
terminal symbols and 118 terminal symbols. After consuming a total of 155 lines, the
number of terminals only increases by one. Having reached 119 terminal symbols, the
size of the grammar remains constant, even after consuming more than a million records.

5. Related Work
This work presents a form of inductive language synthesis. This problem seeks to build an
automaton that recognizes a language from positive and negative examples of sentences.

Figure 9. Impact of Lushu interception in the memory consumption of the log
producer.

The former belong to the language; the latter don’t. Inductive language synthesis has its
origins in the work of [Gold(1967)]. The version of the problem studied by [Gold(1967)]
aims to recognize the language “in the limit”, that is, from a potentially endless stream
of positive examples. In that version, a “recognizer” is built incrementally from the seen
examples. Our work fits into this theoretical framework.

The inductive synthesis of languages can incorporate negative examples, which
are sentences that do not belong to the language. Much of the related literature is based on
the work of [Angluin(1987)]. [Angluin(1987)] presents a framework formed by a learner
(as in the work of [Gold(1967)]) and by a teacher: the source of information. The learner
must identify a regular language that the teacher knows. The learning process follows a
trial-and-error strategy. The learner presents a deterministic finite automaton (DFA) to the
teacher. If their conjecture is correct, the teacher answers affirmatively. Otherwise, the
teacher shows them a counterexample—a string that the automaton does not recognize,
or recognizes but is not in the objective language. [Angluin(1987)]’s work (and the many
works she inspired) depends on the existence of the teacher role. The present work differs
from the [Angluin(1987)] framework in that it does not encompass the teacher role and
does not use negative examples.

The techniques presented in this work are similar to the work of [Shcherbakov(2016)].
Similarities include incremental learning and the availability only of positive examples.
The algorithm proposed by [Shcherbakov(2016)] is based on alignment of sequences: the
same principle used, for example, in genetic sequencing. The algorithm proposed in the

Figure 10. Comparison between the size of the grammars produced by Lushu
and Zhefuscator.

present work is based on a lattice, which is extracted from a user-built specification. In
that sense, [Shcherbakov(2016)]’s technique is more automatic: while our work presup-
poses the lattice and the examples, the technique of [Shcherbakov(2016)] only needs the
examples. However, [Shcherbakov(2016)]’s algorithm is quadratic in the size of the ex-
amples: if the longest example has O(N) characters, and there are O(X) examples, the
algorithm has complexity O(X × N2). The algorithm presented in this work has lower
complexity: O(X ×N).

6. Conclusion

We have presented a system for compressing grammars that recognize a finite sequence
of example sentences. The proposed technique consists in joining tokens that occur in
the same positions of different sentences into regular expressions. Tokens are joined ac-
cording to the structure of a semilattice. This semilattice emerges from a user-defined
specification of character sets. The proposed ideas were incorporated into an interception
system that automatically encrypts sensitive information, known as Lushu. This system
is free software, available under the GPL 3.0 license. Although it can already be used
in practical situations, there are still several directions along which Lushu could be im-
proved. In particular, the proposed ideas are only able to reduce tokens, but not entire
production rules. It is expected that this limitation will be overcome by future develop-
ments of this work.

References
[Angluin(1987)] Dana Angluin. 1987. Learning regular sets from queries and counterexam-

ples. Information and computation 75, 2 (1987), 87–106.

[CCPA(2020)] CCPA. 2020. https://oag.ca.gov/privacy/ccpa

[Datadog(2023)] Datadog. 2023. https://www.datadoghq.com/

[Fluentd(2023)] Fluentd. 2023. https://www.fluentd.org/

[GDPR(2018)] GDPR. 2018. https://gdpr-info.eu/

[Gold(1967)] E Mark Gold. 1967. Language identification in the limit. Information and con-
trol 10, 5 (1967), 447–474.

[Huffman(1952)] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the Institute of Radio Engineers 40, 9 (Septem-
ber 1952), 1098–1101.

[Lei Geral de Proteção de Dados(2018)] Lei Geral de Proteção de Dados. 2018. https:
//www.gov.br/cidadania/pt-br/acesso-a-informacao/lgpd

[Logstash(2023)] Logstash. 2023. https://www.elastic.co/logstash/

[Meyer and Stockmeyer(1972)] A. R. Meyer and L. J. Stockmeyer. 1972. The Equivalence
Problem for Regular Expressions with Squaring Requires Exponential Space. In
Proceedings of the 13th Annual Symposium on Switching and Automata Theory
(Swat 1972) (SWAT ’72). IEEE Computer Society, USA, 125–129. https:
//doi.org/10.1109/SWAT.1972.29

[Saffran et al.(2021)] João Saffran, Haniel Barbosa, Fernando Magno Quintão Pereira, and
Srinivas Vladamani. 2021. On-line synthesis of parsers for string events. Journal of
Computer Languages 62 (2021), 101022. https://doi.org/10.1016/j.
cola.2021.101022

[Shcherbakov(2016)] Andrei Shcherbakov. 2016. A Branching Alignment-Based Synthesis of
Regular Expressions. In AIST (Supplement). Springer, Berlin, Germany, 315–328.

[Splunk(2023)] Splunk. 2023. https://www.splunk.com/

[Sumo Logic(2023)] Sumo Logic. 2023. https://www.sumologic.com/

https://oag.ca.gov/privacy/ccpa
https://www.datadoghq.com/
https://www.fluentd.org/
https://gdpr-info.eu/
https://www.gov.br/cidadania/pt-br/acesso-a-informacao/lgpd
https://www.gov.br/cidadania/pt-br/acesso-a-informacao/lgpd
https://www.elastic.co/logstash/
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1016/j.cola.2021.101022
https://doi.org/10.1016/j.cola.2021.101022
https://www.splunk.com/
https://www.sumologic.com/

	Introduction
	Overview
	Data Protection Laws
	Log Producers
	From Logs to Infinite Languages

	The Lushu System
	Regular Expression Lattice
	Heap-CNF Grammars
	Using the Lattice to Merge Tokens
	The Widening Operation

	Marking Sensitive Data

	Evaluation
	QP1: Execution Time
	QP2: Memory Consumption
	QP3: Grammar Compression Rate
	QP4: Convergence Rate for Real Logs

	Related Work
	Conclusion

