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Resumo — Este trabalho apresenta uma investigação de
técnicas de reward shaping e curriculum learning no contexto
de aprendizado por reforço para o controle puramente cine-
mático de uma mão, sem a necessidade de dados anotados ou
aprendizado explícito da dinâmica do ambiente. Modelamos o
problema como um Processo de Decisão de Markov em que a
política, parametrizada por uma rede neural, gera diretamente
as variações angulares das juntas da mão para tocar pontos-
alvo posicionados aleatoriamente sobre um objeto. A função de
recompensa é composta por três termos contínuos e diferenciá-
veis: contato, colisões e limites articulares, ponderados de forma
a priorizar o estabelecimento de contato estável antes de refinar
aproximações e penalizar movimentos inválidos. Aplicamos
Proximal Policy Optimization (PPO) com respeito à função
de recompensa, obtendo políticas capazes de realizar (em
pelo menos 50% dos cenários apresentados) contatos precisos,
respeitando limites anatômicos, com movimentações pouco
sujeitas a jitter e orientações imprevisíveis. Demonstramos
que o reward shaping e o curriculum learning melhoram a
estabilidade e a eficiência do aprendizado, embora a alta
dimensionalidade ainda imponha desafios de generalização.

Palavras-chave — reward shaping, reinforcement learning,
animation, kinematics

I. Introdução
Soluções para a imitação adequada de movimentos

observados em entidades complexas têm sido investigadas
na literatura de aprendizado por reforço desde o início
da última década e se desenvolvido desde então. Modelos
como GAIL [1] e DeepMimic [2] são capazes de combi-
nar objetivos circunstanciais e referências de movimento
para produzir simulações com realismo expressivamente
superior às primeiras soluções apresentadas.

Uma característica comum de modelos que consideram
objetivos e referências é a demanda evidente por uma base
de dados rotulados e a ruptura com um paradigma de
aprendizado por reforço puro. A exploração de técnicas de
reward shaping para produzir modelos igualmente eficazes
mas independentes de extensos dados de treino ainda
é uma tarefa corrente, como mostram os trabalhos de
Harutyunyan et al. (2015) [3] e Zou et al. (2019) [4].

A. Contribuições
Este trabalho busca contribuir com a investigação

e desenvolvimento de soluções puramente baseadas em
aprendizado por reforço para controle de cadeias cinemá-
ticas. Essas características são escolhidas justamente pela
composição de um problema ainda não extensivamente

investigado sob o prisma de aprendizado por reforço não-
supervisionado.

Formulamos também, de maneira sucinta, a tarefa de
controle de cadeias cinemáticas no espaço R3 como um
Processo de Decisão de Markov. Essa definição e sua
implementação, aqui dimensionadas para o controle de
uma mão com 16 juntas, podem ser facilmente modificadas
para atender cadeias cinemáticas arbitrárias. Semelhan-
temente, a metodologia proposta para o aprendizado de
máquina da tarefa de controle é facilmente extensível para
cadeias e requisitos diversos via customização das funções
de recompensa e dos cenários de treino.

Para além do campo teórico, aplicações das soluções
aqui estudadas incluem efeitos visuais para cinema, ani-
mação e jogos eletrônicos, planejamento de trajetórias em
robótica e análises biométricas – em geral, cenários onde
uma sequência temporal das diferentes posições de um
agente executando uma atividade específica é desejável.

II. Trabalhos Relacionados
A. Reward Shaping

Wiewiora et al. (2003) [5] demonstram que, no contexto
de aprendizado por reforço, é possível introduzir planeja-
mento via termos adicionais na função de recompensa de
maneira a preservar a política ótima (determinada por um
objetivo central). Neste trabalho, exploramos a estratégia
de reward shaping para induzir comportamentos desejáveis
no agente. Especificamente, atendemos os requisitos do
cenário: coerência anatômica, aproximação entre junta e
ponto-alvo, baixo jitter1 e coerência física (não-colisão)
via construção intencional de múltiplas funções de re-
compensa, manipuladas aritmeticamente para favorecer
o aprendizado via descida de gradiente e integradas por
soma ponderada na função final, como descrito na Seção
IV-D.

Espera-se, portanto, que a introdução dessas recompen-
sas não interfira na política ótima – aqui definida como a
prioridade primária no contato entre as juntas e os alvos.

B. Curriculum Learning
A premissa de que um agente é capaz de aprender

uma representação útil da política ótima de um dado
1Em tradução literal: tremor, i.e., movimentos em direções alter-

nantemente opostas.



problema final a partir de uma versão simplificada do
problema é firmada no conceito de curriculum learning.
Especificamente, Bengio et al.[6] formalizam a intuição de
que apresentar tarefas de dificuldade crescente em ordem
durante o treinamento de um agente é mais efetivo do que
apresentar o problema completo.

Aqui, utilizamos esse princípio como fundamento para
a estratégia de apresentar ao agente cenários inicialmente
mais permissivos, restringindo gradativamente os requisi-
tos do problema apresentado. Especificamente, construí-
mos uma estratégia de anelamento do parâmetro ε que
controla (não-linearmente) a magnitude da recompensa
de contato. Como ilustrado na Figura 1, valores de ε
mais altos aumentam a recompensa por contatos de menor
precisão (i.e., a maior distância do alvo).
C. DeepMimic

Esse estudo utiliza aprendizado por reforço para de-
senvolver um agente capaz de produzir realistic physics-
based character skills, i.e., desenvolver uma política capaz
de considerar um objetivo geral (e.g., se locomover a um
ponto x, y, z) e um objetivo de imitação – características
chave para um modelo que deve ao mesmo tempo ser
realista e responder de maneira dinâmica a problemas
variados.

O ambiente é modelado a partir de uma simulação de
física dinâmica, de maneira que o agente define valores-
alvo para as velocidades lineares e angulares das juntas
de uma entidade por meio de um controlador de derivada
parcial – uma ferramenta útil para abstrair detalhes físicos
do escopo do agente. O estado é representado como um
conjunto de juntas e suas respectivas posições, orientações
e velocidades lineares e angulares.

O DeepMimic também se diferencia pela estratégia de
reward shaping, tal que a função de recompensa r utilizada
é a média ponderada entre uma recompensa de objetivo
rG e uma recompensa de imitação rI , definida como
uma média ponderada de funções específicas para posição,
velocidade, posição das mãos e pés e centro de massa.

O aprendizado é feito utilizando Proximal Policy Op-
timization para otimizar os pesos θ de uma rede neural
que representa a política π. Semelhantemente, os pesos ψ
de uma rede neural que representa a função de valor V
são otimizados utilizando TD(λ). Os resultados atingidos
ultrapassaram expressivamente o estado-da-arte à época
da publicação.

O artigo de Peng et al. [2] introduz decisões de design
na solução do problema proposto que atenuam a maior
parte das dificuldades encontradas pela literatura até
então. Especificamente, a representação formal do corpo
do agente como um conjunto de juntas no espaço e
suas propriedades específicas é valiosa na concepção deste
trabalho de curso.
D. Learning Dexterous In-Hand Manipulation

Nesse trabalho, [7] PPO é aplicada ao cenário de uma
mão robótica com 24 eixos para executar reorientações

arbitrárias de um cubo puramente por meio de apren-
dizado por reforço. Executando milhares de simulações
randomizadas em paralelo2 e usando uma função de
recompensa escalonada, seguindo uma estratégia de cur-
riculum que inicialmente incentiva o alinhamento de uma
única face antes de exigir a orientação completa do cubo,
eles demonstram que o PPO consegue otimizar de forma
estável uma política de 60 milhões de parâmetros mesmo
sob alta dimensionalidade e contatos estocásticos.

Analogamente, em vez de mapear observações para
torques, a política desenvolvida no caso puramente ci-
nemático abordado no presente trabalho deve gerar di-
retamente os ângulos das juntas da mão e do objeto
como uma sequência temporal. Sendo o caso aqui proposto
um equivalente simplificado e com muito menos graus
de liberdade, espera-se que a composição de uma única
função de recompensa, junto à estratégia de curriculum
learning, seja suficiente para garantir convergência. Por
fim, o estudo providencia justificativas para o uso de
PPO no problema abordado, destacando a estabilidade
no aprendizado da política para sequências temporais de
ações.

III. Objetivos

Genericamente, investigamos a aplicabilidade de solu-
ções puramente baseadas em aprendizado por reforço, sem
dados anotados e sem a construção de um modelo de tran-
sição do MDP (i.e., estratégias model-free) na tarefa de
controle de cadeias cinemáticas no espaço tridimensional.

Para isso, definimos um cenário simulado onde temos
o objetivo específico de aprender, para qualquer configu-
ração do problema, a orientar uma mão no espaço R3

a partir do controle dos ângulos θj ∈ R3 para cada
uma de suas 16 juntas, de maneira a tocar um objeto
alvo O em um ponto alvo τj posicionado aleatoriamente
na superfície do objeto e correspondente a uma junta
jτ ∈ J aleatoriamente selecionada3. Essa tarefa promove
uma investigação de proveito geral sobre a aplicação de
aprendizado por reforço para produção de animações no
contexto de cadeias cinemáticas.

IV. Metodologia

Sintetizamos a metodologia do seguinte trabalho em:
modelar a tarefa do controle de uma mão em cinemática
direta como um MDP; otimizar a política via Proximal
Policy Optimization [8], considerando:

1) Objetivo no cenário: tocar um ponto τj com a junta
jτ no espaço

2) Reward shaping: manter anatomia e movimentos
visualmente coerentes.

2Inspiração crucial para a paralelização de ambientes de treino
implementada no presente trabalho, que viabiliza a execução de
milhões de etapas de treino a baixo custo computacional.

3Dentre as pontas dos dedos.



e aplicando curriculum learning aleatorizado e em etapas.
Então, devemos verificar a qualidade das animações pro-
duzidas:

1) O agente consegue alcançar o objeto?
2) Os limites anatômicos são obedecidos?
3) Os movimentos são bruscos ou imprevisíveis?
4) A manipulação da cadeia cinemática parece intenci-

onal e coerente?

A. Modelagem
Modelamos o problema da animação de uma mão como

o controle dos ângulos θj,i para cada grau de liberdade
i de cada junta j que faz parte da cadeia cinemática
J . Incorporando um limite anatômico básico, limitamos
as juntas (com exceção do pulso) a um único grau de
liberdade, correspondente à flexão/extensão dos dedos.

A dinâmica que determina a posição e orientação de
cada um dos componentes da mão no espaço tridimen-
sional é o processo de cinemática direta – por sua vez,
determinado pela relação hierárquica e posicional entre as
juntas, representada pela função φ(j) : J → J (indicando
a junta antecessora) e pela matriz D4×4 (uma matriz de
translação em R3 na forma homogênea), respectivamente.

B. Ações
Essa modelagem permite a definição de um MDP onde

ações At ∈ A determinam a variação em θ a cada instante
t, tal que

At = {∆θt}.

C. Estados e dinâmica
Cada estado St = {Wt, O} ∈ S contém o conjunto das

transformações espaciais Wj,t ∈ R4×4 que representam a
posição e orientação de cada j ∈ J , determinadas pela
função W (θt) : R16×3 → R16×4×4 que implementa a
cinemática direta:

p(St+1|St, At) =

{
1 para St+1 = {W (θt), O}
0 caso contrário.

A função W (θt) toma como parâmetros implícitos a
configuração estática da mão representada por φ e D.
Omitindo a notação temporal por conveniência, determi-
namos as transformações espaciais conforme:

Wj(θ) =Wφ(j)(θ) Dj R(θj),

sendo R(θj) : R3 → R4×4 a função que implementa a
fórmula de Rodrigues para rotações arbitrárias em cada
um dos graus de liberdade da junta.

A parte do estado denotada por O ∈ (R4×4,R16×4)
representa a transformação espacial homogênea correspon-
dente ao objeto-alvo, bem como a especificação dos pontos
de contato para cada junta. Assim, temos:

O = {WO, τt},

tal que τj,t ∈ R4 é a posição relativa a WO desejada
para a junta j. Especificamente, τj tem a seguinte forma
com relação a R3:

τj =

{
(x, y, z, 1) caso j deva tocar o objeto
(x, y, z, 0) caso j deva ignorar o objeto.

Dessa maneira, a definição de St para cada t de um
episódio completo é justamente o roteiro de uma animação
onde o agente controla a cadeia cinemática com vistas a a
aproximar jτ de τjτ (na prática, tocar o alvo com a ponta
de dedo selecionada).

D. Recompensas
Determinamos as recompensas como uma soma pon-

derada entre três componentes, ilustrados na Figura 1,
que representam aspectos relevantes para a naturalidade
e qualidade da animação final. Especificamente, avalia-
mos: contato ao ponto-alvo, resposta a colisões e limites
articulares conforme pesos empiricamente definidos por ρ,
tal que:

r(St) =
∑

ri∈{rC , rCD, rL}

ρiri(St)

O componente rC define a recompensa do agente por
contato com pontos-alvo. Sendo pj a posição absoluta da
junta j e qj a posição determinada pelos primeiros três
índices de τj transformada por WO, temos uma função de
recompensa contínua e diferenciável:

rC(St) =
∑
j∈Jτ

1

1 + (‖pj − qj‖/ε)2

onde Jτ é o conjunto das juntas j ∈ J tal que o
último índice de τj é 1 e ε é um parâmetro de escala
que controla a sensibilidade da recompensa à distância.
Essa formulação permite fornecer gradientes úteis para o
aprendizado mesmo quando o agente está longe do alvo, vi-
abilizando o aprendizado inicial – dada a dimensionalidade
do problema, é extremamente improvável que o agente
acerte a manipulação da cadeia cinemática de maneira a
tocar o alvo por acaso (ou por exaustão de tentativas).

As colisões são detectadas assumindo que o objeto em
WO é uma esfera de raio rc = 0.3. A penalidade por colisão
utiliza uma função quártica que cresce rapidamente na
direção negativa conforme a junta se aproxima do objeto:

rCD(St) = −
∑
j∈J

‖pj−pO‖<rc

[
1−

(
‖pj − pO‖

rc

)4
]

Sendo J+ o conjunto de juntas com exceção do pulso,
o componente rL pune a violação de limites articulares.
Especificamente, para cada junta dos dedos, induzimos
o ângulo θj,x a obedecer os limites anatômicos θj,x ∈
[− 2π

3 ,
π
2 ] por meio de uma penalidade suave:
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Figura 1. Funções de recompensa

rL(St) = −
∑
j∈J+

min

(
1,

(
max(0, θj,x − π

2 ,−
2π
3 − θj,x)

δ

)2
)

onde δ = 0.3 controla a suavidade da transição entre as
regiões válida e inválida do espaço de configuração.

E. Aprendizado
Cada episódio é truncado após, no máximo, tmax = 128

passos (mais cedo, em caso de contato sustentado por
≥ 5 timesteps), e a recompensa total é calculada como
soma ponderada dos componentes de contato (ρrC = 20),
colisão (ρrCD

= 4) e limites articulares (ρrL = 2),
refletindo prioridade máxima em estabelecer um contato
estável antes de refinar a aproximação e impor penalidades
crescentes para colisões ou violações de ângulo.

Para otimizar a política nesses cenários de alta di-
mensionalidade e espaço de ação contínuo, empregamos
o método Proximal Policy Optimization (PPO) [8], assim
como o DeepMimic [2]. A implementação do ambiente no
contexto de aprendizado por reforço é essencialmente a
função de cinemática direta descrita na Seção IV-C.

Duas redes neurais profundas, com duas camadas inter-
nas de 64 perceptrons, foram construídas para implemen-
tar a política π : S → A e a função de valor V : S → R,
que produzem a ação a ser tomada e o valor observado no
estado (estimativas atualizadas a partir das recompensas
observadas) a cada instante t.

O modelo recebe observações do ambiente contendo a
posição da mão, posição do objeto e configuração do ponto-
alvo (achatadas para um vetor em R77) como entrada de
duas redes neurais. As duas redes distintas lêem o estado
do ambiente e produzem, respectivamente, a ação a ser
tomada no ambiente e o valor do estado observado. A ação
interfere no ambiente por meio da dinâmica, determinando
o próximo estado, e o valor do estado atual é utilizado
para otimizar os pesos do actor em função do gradiente
da política, determinado pela função de perda. Os pesos do
critic, por sua vez, são semelhantemente otimizados para
aproximar a função de valor real com base nas observações.

(x77)

(x64)

(x64)

(x18)

(x77)

(x64)

(x64)

Ambiente

Actor

Critic

Ações

V(s)

Policy
Gradient

Figura 2. Ilustração simplificada da implementação de PPO [8].
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Figura 3. Recompensas obtidas ao longo do treinamento.

Essa otimização é realizada executando iterativamente
o processo ilustrado na Figura 2, utilizando o algoritmo
Adam [9] para descida de gradiente. Especificamente, os
resultados apresentados foram obtidos após 896.000 times-
teps de treino, executando episódios de até 128 timesteps
(terminados antes caso o contato seja atingido e mantido)
em 16 ambientes paralelos, coletando batches com os
estados e recompensas observados em 2048 timesteps.

Aplicamos o conceito de curriculum learning [6] por
meio do anelamento do parâmetro ε que controla a sensi-
bilidade da recompensa de contato. O valor de ε é reduzido
linearmente de 1.5 para 0.3 ao longo do treinamento. Como
evidenciado na Figura 3, valores maiores de ε aumentam
a recompensa por contatos de menor precisão, tornando
o problema inicialmente mais permissivo e facilitando
o aprendizado inicial. Gradativamente, à medida que ε
decresce, o requisito de precisão aumenta, forçando o
agente a refinar sua política para alcançar contatos mais
precisos.

V. Resultados

Mensuramos o progresso do aprendizado na tarefa pro-
posta por meio da decomposição das recompensas em seus
componentes ao longo do tempo; semelhantemente, acom-
panhamos a função de perda para verificar a ocorrência de
otimização como um teste de sanidade. Adicionalmente,
monitoramos a distância mínima entre o alvo τj e a junta
jτ (por episódio, em uma média móvel n = 40) e a taxa de
sucesso cumulativa, i.e., a razão entre todos os episódios
executados e aqueles terminados antes de t = 128 devido
ao contato (dentro do threshold εmin = 0.3) sustentado
por pelo menos 5 instantes.

A Figura 3 ilustra tendências características de aprendi-
zado bem sucedido para o problema proposto. Na ausência
de aprendizado do controle da cadeia cinemática, a recom-
pensa de contato decresceria abaixo da linha tracejada
que monitora ε, vide sua fórmula definida na Seção IV-D
e ilustrada na Figura 1; semelhantemente, a distância
mínima alcançada entre a ponta de dedo e o alvo não
decresceria ao longo do treino.
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Figura 4. Função de perda e taxa de sucesso cumulativa ao longo do treinamento.

Observamos, de fato, que a recompensa de contato
média segue crescendo e se estabiliza mesmo com o ane-
lamento do parâmetro ε; observamos também a redução
das penalidades por violação de limites anatômicos, quase
totalmente evitados ao final do treino; a penalidade por
colisão só aparece ocasionalmente durante o treino, mas
sua magnitude também decresce com o tempo. Importan-
temente, a distância mínima atingida decresce consisten-
temente até u 0.2 o final do treino. Estas observações não
indicam sucesso completo (especialmente com respeito à
generalização para quaisquer instâncias do problema), mas
sugerem pelo menos a manipulação direcionada da cadeia
cinemática para atender os objetivos estabelecidos pelas
funções de recompensa.

Analisando a Figura 4, observamos que a função de
perda tem o caráter irregular típico de métodos baseados
em gradiente de política, fortalecido pela recursividade
estrutural da estratégia actor-critic (utilizamos as saídas
de uma rede neural para treinar a outra) e pelo anelamento
do parâmetro ε, que implica em uma função de recompensa
não-estacionária e, portanto, mais difícil de se aproximar.
No geral, entretanto, a função decresce até um mínimo
próximo do início do treino, mas com ε = 0.3 em vez
de ε = 1.5, adaptada ao requisito de maior precisão no
contato.

Ainda, a taxa de sucesso cresce consistentemente – o que
é esperado, naturalmente, para uma razão cumulativa –
até 30% ao final do treino. Avaliado em 1000 episódios,
o modelo obtido ao final do treino ilustrado nas Figuras
3 e 4 obteve uma taxa de sucesso de 50%. As animações
produzidas estão disponíveis como sequências de transfor-
madas, estruturadas para renderização via Blender4, junto

4Software de modelagem e animação 3D de código aberto, dispo-
nível em https://github.com/blender/blender.

ao código-fonte do trabalho5 e, para conveniência, também
na plataforma YouTube6.

Uma análise qualitativa das animações produzidas,
técnica utilizada recorrentemente ao longo do desenvolvi-
mento do trabalho para identificar direções de evolução
e correção, revela a ausência do problema de jitter,
comumente enfrentado em trabalhos estado-da-arte ([1],
[2]); além disso, os movimentos produzidos são visual-
mente orgânicos em virtude da própria modelagem do
problema, dispensando termos de eficiência de movimento
ou adaptações específicas contra jitter. De fato, os limites
anatômicos são raramente violados; por outro lado, não
é difícil amostrar casos onde o modelo ainda obtém a
penalidade de colisão7. No geral, a cadeia é manipulada
com sucesso para aproximar a ponta de dedo selecionada
do alvo aleatoriamente instanciado, mas em metade dos
casos o modelo não atinge precisão completa. Atribuições
dos sucessos e falhas observados nesta seção a decisões da
metodologia proposta são elaboradas na Seção VI.

Tabela I
Hiperparâmetros utilizados na PPO

Hiperparâmetro Valor
Taxa de aprendizado 1.6× 10−3

Fator de desconto (γ) 0.99
Suavização GAE (λ) 0.95
Ambientes paralelos 16
Tamanho do batch 2048
Intervalo de clipping 0.25
Coeficiente de entropia 0.005

5Disponível em https://github.com/masganem/msi2.
6Disponível em https://youtu.be/ZsoqlpEgEbo.
7Intuitivamente, devido à inerente baixa probabilidade de colisão

durante o treino.

https://github.com/blender/blender
https://github.com/masganem/msi2
https://youtu.be/ZsoqlpEgEbo


VI. Considerações

A. Do problema de generalização
A tarefa de controle de cadeias cinemáticas no espaço

R3 é um desafio de inerente alta dimensionalidade, propor-
cional ao número de graus de liberdade coordenados e à
complexidade da estrutura da cadeia em si (vide D4×4×|J|
e φ : J → J definidas na Seção IV-A). Apesar da dinâmica
constante, os cenários apresentados a cada episódio têm
o objeto e o alvo aleatoriamente instanciados no espaço;
além disso, a junta jτ é amostrada aleatoriamente dentre
as pontas dos dedos.

Essa estratégia, junto à execução de múltiplos ambi-
entes de treino em paralelo (possível pela indiferença
com respeito à ordenação dos episódios de treino8), é
adotada com vistas aprender uma política genérica via
amostragem do espaço total de possíveis configurações do
problema. A taxa de sucesso examinada na Seção V sugere
que tal generalização não é atingida; de fato, analisando
qualitativamente as animações, observamos casos onde o
agente só se aproxima parcialmente do alvo e para de se
movimentar, ou atinge um ponto que equilibra penalidades
e recompensas (e.g., alcançar o alvo com uma configuração
anatômica inválida) – este último sendo um caso marginal.

A ordenação dos cenários apresentados, refletindo uma
estratégia de curriculum [6], inviabiliza o treino paraleli-
zado e não promove resultados melhores, mesmo coletando
múltiplos batches9 antes de cada atualização dos pesos;
na verdade, o agente se enviesa para uma configuração
específica do problema a cada novo episódio. A Seção
VII elabora alternativas para a solução do problema de
generalização sem comprometer a eficiência do processo
de treino.

B. Da confecção das funções de recompensa
Um ponto limitante da abordagem adotada está re-

lacionado à própria formulação manual das funções de
recompensa e à escolha empírica de seus pesos. Embora
tais decisões sejam essenciais para induzir propriedades
desejáveis, elas também introduzem vieses no comporta-
mento aprendido. Na prática, o agente pode estar oti-
mizando particularidades da superfície multidimensional
estabelecida pelo gradiente da função de recompensa, após
somados todos os seus componentes, em vez de adquirir
uma noção mais geral de controle da cadeia cinemática.

Além disso, alterações nos pesos ρ ou na forma aritmé-
tica dos termos de recompensa podem resultar em polí-
ticas significativamente distintas, indicando sensibilidade
elevada à configuração de reward shaping. Esse fenômeno
sugere que parte do desempenho obtido decorre mais do
cenário de treinamento cuidadosamente construído do que
de uma capacidade intrínseca de generalização do método.

8Refletindo a estratégia adotada por Andrychowicz et al. (2019)
na tarefa de Dexterous In-Hand Manipulation [7].

9Conjuntos de pares {St, r(St)} contemplando múltiplos episódios.

C. Da comparação com a cinemática inversa
Embora métodos tradicionais de cinemática inversa

ofereçam soluções determinísticas e eficientes para o posi-
cionamento de cadeias articuladas, sua formulação tende
a se distanciar do comportamento orgânico que buscamos
reproduzir neste trabalho. A abordagem proposta, ao
operar diretamente sobre variações angulares sucessivas e
propagar transformações via cinemática direta, aproxima-
se mais de um modelo natural de movimento, no qual a
trajetória emerge da interação temporal entre estados.

Em contraste, soluções de cinemática inversa frequente-
mente tratam o problema como uma busca instantânea por
uma configuração final válida, sem considerar a evolução
contínua das poses intermediárias. Deve-se a isso sua
eficiência computacional, mas também o caráter robótico
das animações produzidas por tais métodos. Além disso, a
extensibilidade é uma contribuição central da metodologia
proposta, visto que o uso de funções de recompensa
configuráveis permite induzir comportamentos arbitrários,
desde restrições anatômicas até preferências estilísticas de
movimento – adaptações não triviais sob o paradigma da
cinemática inversa.

VII. Trabalhos Futuros
Continuações do presente trabalho devem investigar

estratégias que ampliem a capacidade do agente de genera-
lizar sobre o espaço completo de configurações gerado pela
aleatorização de alvos e seleção de juntas. Centralmente,
pode-se adaptar o currículo de treino considerando a não
equivalência de todas as configurações aleatórias, i.e., o
fato de que alguns cenários são mais ou menos desafiadores
a depender da estrutura da cadeia cinemática ou da junta
jτ selecionada. Amostragens mais estruturadas, currículos
adaptativos que reajustem a dificuldade com base no
desempenho e a exposição deliberada a configurações
desafiadoras podem mitigar alguns dos problemas obser-
vados, especialmente aqueles em que o agente interrompe
o movimento ou converge para poses insatisfatórias.

Além da forma como os dados são apresentados ao
agente, avanços arquiteturais e algorítmicos podem con-
tribuir de maneira substancial para a robustez do apren-
dizado. Abordagens como políticas hierárquicas, explicita-
ção da dinâmica ou modelos com vieses espaciais explícitos
podem capturar melhor as dependências entre juntas
em cadeias cinemáticas. Do mesmo modo, algoritmos
projetados para problemas contínuos de alta dimensio-
nalidade como Twin Delayed Deep Deterministic Policy
Gradient (TD3)[10] podem apresentar maior estabilidade
no aprendizado do que o PPO neste cenário.

Por fim, sugere-se estudos de ablação com respeito
aos diversos componentes das funções de recompensa
propostas na Seção IV-D, bem como ao anelamento do
parâmetro ε explicado na Seção IV-E.
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