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Resumo — Este trabalho apresenta uma investigacdo de
técnicas de reward shaping e curriculum learning no contexto
de aprendizado por reforco para o controle puramente cine-
matico de uma mao, sem a necessidade de dados anotados ou
aprendizado explicito da dindmica do ambiente. Modelamos o
problema como um Processo de Decisdo de Markov em que a
politica, parametrizada por uma rede neural, gera diretamente
as variagoes angulares das juntas da mao para tocar pontos-
alvo posicionados aleatoriamente sobre um objeto. A funcdo de
recompensa é composta por trés termos continuos e diferencié-
veis: contato, colisdes e limites articulares, ponderados de forma
a priorizar o estabelecimento de contato estdvel antes de refinar
aproximacdes e penalizar movimentos invalidos. Aplicamos
Proximal Policy Optimization (PPO) com respeito a fungio
de recompensa, obtendo politicas capazes de realizar (em
pelo menos 50% dos cenérios apresentados) contatos precisos,
respeitando limites anatdémicos, com movimentagdoes pouco
sujeitas a jitter e orientagdes imprevisiveis. Demonstramos
que o reward shaping e o curriculum learning melhoram a
estabilidade e a eficiéncia do aprendizado, embora a alta
dimensionalidade ainda imponha desafios de generalizacao.
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I. Introducao

Solugdes para a imitacdo adequada de movimentos
observados em entidades complexas tém sido investigadas
na literatura de aprendizado por reforgo desde o inicio
da ultima década e se desenvolvido desde entao. Modelos
como GAIL [1] e DeepMimic [2] s@o capazes de combi-
nar objetivos circunstanciais e referéncias de movimento
para produzir simulagées com realismo expressivamente
superior as primeiras solugoes apresentadas.

Uma caracteristica comum de modelos que consideram
objetivos e referéncias é a demanda evidente por uma base
de dados rotulados e a ruptura com um paradigma de
aprendizado por reforco puro. A exploracao de técnicas de
reward shaping para produzir modelos igualmente eficazes
mas independentes de extensos dados de treino ainda
é uma tarefa corrente, como mostram os trabalhos de
Harutyunyan et al. (2015) [3] e Zou et al. (2019) [4].

A. Contribuicoes

Este trabalho busca contribuir com a investigacao
e desenvolvimento de solugbes puramente baseadas em
aprendizado por refor¢o para controle de cadeias cinema-
ticas. Essas caracteristicas sdo escolhidas justamente pela
composicao de um problema ainda nado extensivamente

investigado sob o prisma de aprendizado por refor¢co nao-
supervisionado.

Formulamos também, de maneira sucinta, a tarefa de
controle de cadeias cineméticas no espaco R? como um
Processo de Decisao de Markov. Essa definicdo e sua
implementacdo, aqui dimensionadas para o controle de
uma mao com 16 juntas, podem ser facilmente modificadas
para atender cadeias cineméticas arbitrarias. Semelhan-
temente, a metodologia proposta para o aprendizado de
maquina da tarefa de controle é facilmente extensivel para
cadeias e requisitos diversos via customizagao das fungoes
de recompensa e dos cenarios de treino.

Para além do campo teérico, aplicagoes das solugoes
aqui estudadas incluem efeitos visuais para cinema, ani-
macao e jogos eletronicos, planejamento de trajetorias em
robdtica e andlises biométricas — em geral, cenarios onde
uma sequéncia temporal das diferentes posi¢oes de um
agente executando uma atividade especifica é desejavel.

II. Trabalhos Relacionados
A. Reward Shaping

Wiewiora et al. (2003) [5] demonstram que, no contexto
de aprendizado por reforgo, é possivel introduzir planeja-
mento via termos adicionais na funcao de recompensa de
maneira a preservar a politica étima (determinada por um
objetivo central). Neste trabalho, exploramos a estratégia
de reward shaping para induzir comportamentos desejaveis
no agente. Especificamente, atendemos os requisitos do
cendrio: coeréncia anatdmica, aproximagao entre junta e
ponto-alvo, baixo jitter! e coeréncia fisica (ndo-colisdo)
via construcdo intencional de multiplas fungées de re-
compensa, manipuladas aritmeticamente para favorecer
o aprendizado via descida de gradiente e integradas por
soma ponderada na funcao final, como descrito na Secao
IV-D.

Espera-se, portanto, que a introducao dessas recompen-
sas nao interfira na politica 6tima — aqui definida como a
prioridade primaria no contato entre as juntas e os alvos.

B. Curriculum Learning
A premissa de que um agente é capaz de aprender
uma representacdo util da politica 6tima de um dado

1Em traducéo literal: tremor, i.e., movimentos em diregdes alter-
nantemente opostas.



problema final a partir de uma versao simplificada do
problema é firmada no conceito de curriculum learning.
Especificamente, Bengio et al.[6] formalizam a intui¢ao de
que apresentar tarefas de dificuldade crescente em ordem
durante o treinamento de um agente é mais efetivo do que
apresentar o problema completo.

Aqui, utilizamos esse principio como fundamento para
a estratégia de apresentar ao agente cenarios inicialmente
mais permissivos, restringindo gradativamente os requisi-
tos do problema apresentado. Especificamente, construi-
mos uma estratégia de anelamento do pardmetro € que
controla (ndo-linearmente) a magnitude da recompensa
de contato. Como ilustrado na Figura 1, valores de ¢
mais altos aumentam a recompensa por contatos de menor
precisdo (i.e., a maior distdncia do alvo).

C. DeepMimic

Esse estudo utiliza aprendizado por reforco para de-
senvolver um agente capaz de produzir realistic physics-
based character skills, i.e., desenvolver uma politica capaz
de considerar um objetivo geral (e.g., se locomover a um
ponto z,y,z) e um objetivo de imitagdo — caracteristicas
chave para um modelo que deve ao mesmo tempo ser
realista e responder de maneira dindmica a problemas
variados.

O ambiente é modelado a partir de uma simulagao de
fisica dindmica, de maneira que o agente define valores-
alvo para as velocidades lineares e angulares das juntas
de uma entidade por meio de um controlador de derivada
parcial — uma ferramenta 1til para abstrair detalhes fisicos
do escopo do agente. O estado é representado como um
conjunto de juntas e suas respectivas posigoes, orientagoes
e velocidades lineares e angulares.

O DeepMimic também se diferencia pela estratégia de
reward shaping, tal que a fun¢ao de recompensa r utilizada
é a média ponderada entre uma recompensa de objetivo
r® e uma recompensa de imitacdo !, definida como
uma média ponderada de fungbes especificas para posigao,
velocidade, posi¢ao das maos e pés e centro de massa.

O aprendizado é feito utilizando Proximal Policy Op-
timization para otimizar os pesos 6 de uma rede neural
que representa a politica 7. Semelhantemente, os pesos
de uma rede neural que representa a funcao de valor V
sao otimizados utilizando TD(A). Os resultados atingidos
ultrapassaram expressivamente o estado-da-arte a época
da publicagao.

O artigo de Peng et al. [2] introduz decisoes de design
na solugao do problema proposto que atenuam a maior
parte das dificuldades encontradas pela literatura até
entdo. Especificamente, a representacao formal do corpo
do agente como um conjunto de juntas no espago e
suas propriedades especificas é valiosa na concepcao deste
trabalho de curso.

D. Learning Dexterous In-Hand Manipulation

Nesse trabalho, [7] PPO ¢é aplicada ao cenario de uma
mao robdtica com 24 eixos para executar reorientagoes

arbitrarias de um cubo puramente por meio de apren-
dizado por reforco. Executando milhares de simulacoes
randomizadas em paralelo? e usando uma funcio de
recompensa escalonada, seguindo uma estratégia de cur-
riculum que inicialmente incentiva o alinhamento de uma
Unica face antes de exigir a orientacao completa do cubo,
eles demonstram que o PPO consegue otimizar de forma
estédvel uma politica de 60 milhGes de pardmetros mesmo
sob alta dimensionalidade e contatos estocasticos.

Analogamente, em vez de mapear observacoes para
torques, a politica desenvolvida no caso puramente ci-
nematico abordado no presente trabalho deve gerar di-
retamente os angulos das juntas da mao e do objeto
como uma sequéncia temporal. Sendo o caso aqui proposto
um equivalente simplificado e com muito menos graus
de liberdade, espera-se que a composi¢cdo de uma tunica
funcdo de recompensa, junto a estratégia de curriculum
learning, seja suficiente para garantir convergéncia. Por
fim, o estudo providencia justificativas para o uso de
PPO no problema abordado, destacando a estabilidade
no aprendizado da politica para sequéncias temporais de
agoes.

III. Objetivos

Genericamente, investigamos a aplicabilidade de solu-
¢oes puramente baseadas em aprendizado por reforgo, sem
dados anotados e sem a construcao de um modelo de tran-
sicdo do MDP (i.e., estratégias model-free) na tarefa de
controle de cadeias cinematicas no espago tridimensional.

Para isso, definimos um cenario simulado onde temos
o objetivo especifico de aprender, para qualquer configu-
racdo do problema, a orientar uma méao no espaco R3
a partir do controle dos angulos 60; € R3 para cada
uma de suas 16 juntas, de maneira a tocar um objeto
alvo O em um ponto alvo 7; posicionado aleatoriamente
na superficie do objeto e correspondente a uma junta
j7 € J aleatoriamente selecionada®. Essa tarefa promove
uma investigacdo de proveito geral sobre a aplicacao de
aprendizado por reforco para producdo de animacoes no
contexto de cadeias cinematicas.

IV. Metodologia

Sintetizamos a metodologia do seguinte trabalho em:
modelar a tarefa do controle de uma mao em cinematica
direta como um MDP; otimizar a politica via Proximal
Policy Optimization [8], considerando:

1) Objetivo no cendrio: tocar um ponto 7; com a junta
77 no espaco

2) Reward shaping: manter anatomia e movimentos
visualmente coerentes.

2Inspiracdo crucial para a paralelizacio de ambientes de treino
implementada no presente trabalho, que viabiliza a execucdo de
milhoes de etapas de treino a baixo custo computacional.

3Dentre as pontas dos dedos.



e aplicando curriculum learning aleatorizado e em etapas.
Entao, devemos verificar a qualidade das animagoes pro-
duzidas:
1) O agente consegue alcancar o objeto?
2) Os limites anatomicos sdo obedecidos?
3) Os movimentos sdo bruscos ou imprevisiveis?
4) A manipulagdo da cadeia cinemédtica parece intenci-
onal e coerente?

A. Modelagem

Modelamos o problema da animac¢ao de uma mao como
o controle dos angulos 60;; para cada grau de liberdade
i de cada junta j que faz parte da cadeia cinematica
J. Incorporando um limite anatémico bésico, limitamos
as juntas (com exce¢do do pulso) a um tunico grau de
liberdade, correspondente & flexdo/extensao dos dedos.

A dindmica que determina a posicdo e orientagdo de
cada um dos componentes da mao no espaco tridimen-
sional é o processo de cinematica direta — por sua vez,
determinado pela relagao hierdrquica e posicional entre as
juntas, representada pela funcao ¢(j) : J — J (indicando
a junta antecessora) e pela matriz D4 (uma matriz de
translacio em R3 na forma homogénea), respectivamente.

B. Acoes
Essa modelagem permite a definigio de um MDP onde

acoes Ay € A determinam a variagdo em 6 a cada instante
t, tal que

Ay = {A6,}.
C. Estados e dinamica

Cada estado Sy = {W;,0} € S contém o conjunto das
transformagdes espaciais W;, € R** que representam a
posicdo e orientagdo de cada j € J, determinadas pela
fungdo W(0;) : RI6x3 — RIX4X4 gue implementa a
cinematica direta:

1 para Siy1 = {W(6;), O}

0 caso contrario.

p(St11]5¢, Ar) = {

A funcdo W(6;) toma como pardmetros implicitos a
configuracdo estdtica da méo representada por ¢ e D.
Omitindo a notagdo temporal por conveniéncia, determi-
namos as transformagcdes espaciais conforme:

W;(0) = Wy (0) D; R(0;),

sendo R(0;) : R?® — R*** a fungdo que implementa a
férmula de Rodrigues para rotagdes arbitrarias em cada
um dos graus de liberdade da junta.

A parte do estado denotada por O € (R**4 R16x4)
representa a transformacao espacial homogénea correspon-
dente ao objeto-alvo, bem como a especificacao dos pontos
de contato para cada junta. Assim, temos:

O = {WO7Tt}7

tal que 7, € R* ¢é a posicao relativa a WO desejada
para a junta j. Especificamente, 7; tem a seguinte forma
com relacdo a R3:

{(m,y,z, 1) caso j deva tocar o objeto
Tj =

(z,y, 2,0) caso j deva ignorar o objeto.

Dessa maneira, a definicao de S; para cada t de um
episodio completo é justamente o roteiro de uma animacgao
onde o agente controla a cadeia cinematica com vistas a a
aproximar j7 de 7;- (na pratica, tocar o alvo com a ponta
de dedo selecionada).

D. Recompensas

Determinamos as recompensas como uma soma pon-
derada entre trés componentes, ilustrados na Figura 1,
que representam aspectos relevantes para a naturalidade
e qualidade da animacdo final. Especificamente, avalia-
mos: contato ao ponto-alvo, resposta a colisoes e limites
articulares conforme pesos empiricamente definidos por p,
tal que:

r(Sy) =

>

ri€{rc, rcp, rr}

piri(St)

O componente r¢ define a recompensa do agente por
contato com pontos-alvo. Sendo p; a posigao absoluta da
junta j e g; a posi¢do determinada pelos primeiros trés
indices de 7; transformada por WO, temos uma funcao de
recompensa continua e diferenciavel:

1
)= Y T =T

jeJr

onde J7 é o conjunto das juntas j € J tal que o
ultimo indice de 7; € 1 e € é um pardmetro de escala
que controla a sensibilidade da recompensa a distancia.
Essa formulagao permite fornecer gradientes uteis para o
aprendizado mesmo quando o agente esta longe do alvo, vi-
abilizando o aprendizado inicial — dada a dimensionalidade
do problema, é extremamente improvavel que o agente
acerte a manipulacdo da cadeia cinematica de maneira a
tocar o alvo por acaso (ou por exaustao de tentativas).

As colisoes sao detectadas assumindo que o objeto em
WO ¢ uma esfera de raio r. = 0.3. A penalidade por colisdo
utiliza uma fungdo quéartica que cresce rapidamente na
direcdo negativa conforme a junta se aproxima do objeto:

(i)

Sendo J* o conjunto de juntas com excecdo do pulso,
o componente ry, pune a violacdo de limites articulares.
Especificamente, para cada junta dos dedos, induzimos
o angulo 6;, a obedecer os limites anatoémicos 60;, €

[—2%, 2] por meio de uma penalidade suave:

rep(Si) = —

D

jedJ
lpj—poll<re
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Cada episodio é truncado apds, no maximo, tyax = 128
passos (mais cedo, em caso de contato sustentado por
> 5 timesteps), e a recompensa total é calculada como
soma ponderada dos componentes de contato (p,, = 20),
colisao (prop, = 4) e limites articulares (p,, = 2),
refletindo prioridade méaxima em estabelecer um contato
estavel antes de refinar a aproximagao e impor penalidades
crescentes para colisdes ou violagoes de angulo.

Para otimizar a politica nesses cenarios de alta di-
mensionalidade e espago de agdo continuo, empregamos
o método Proximal Policy Optimization (PPO) [8], assim
como o DeepMimic [2]. A implementacao do ambiente no
contexto de aprendizado por reforco é essencialmente a
fun¢do de cinemaética direta descrita na Segao IV-C.

Duas redes neurais profundas, com duas camadas inter-
nas de 64 perceptrons, foram construidas para implemen-
tar a politica 7 : § — A e a fungéo de valor V : § — R,
que produzem a acao a ser tomada e o valor observado no
estado (estimativas atualizadas a partir das recompensas
observadas) a cada instante ¢.

O modelo recebe observagbes do ambiente contendo a
posicao da mao, posi¢ao do objeto e configuracao do ponto- T ey |
alvo (achatadas para um vetor em R77) como entrada de | Gradient |
duas redes neurais. As duas redes distintas léem o estado
do ambiente e produzem, respectivamente, a agdo a ser
tomada no ambiente e o valor do estado observado. A acao o Vis)
interfere no ambiente por meio da dindmica, determinando
o préximo estado, e o valor do estado atual é utilizado Figura 2. Ilustracdo simplificada da implementagdo de PPO [8].
para otimizar os pesos do actor em funcdo do gradiente
da politica, determinado pela fun¢ao de perda. Os pesos do
critic, por sua vez, sao semelhantemente otimizados para
aproximar a funcdo de valor real com base nas observacoes.
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Figura 3. Recompensas obtidas ao longo do treinamento.

Essa otimizagdo é realizada executando iterativamente
o processo ilustrado na Figura 2, utilizando o algoritmo
Adam [9] para descida de gradiente. Especificamente, os
resultados apresentados foram obtidos ap6s 896.000 times-
teps de treino, executando episédios de até 128 timesteps
(terminados antes caso o contato seja atingido e mantido)
em 16 ambientes paralelos, coletando batches com os
estados e recompensas observados em 2048 timesteps.

Aplicamos o conceito de curriculum learning [6] por
meio do anelamento do pardmetro € que controla a sensi-
bilidade da recompensa de contato. O valor de € é reduzido
linearmente de 1.5 para 0.3 ao longo do treinamento. Como
evidenciado na Figura 3, valores maiores de € aumentam
a recompensa por contatos de menor precisdo, tornando
o problema inicialmente mais permissivo e facilitando
o aprendizado inicial. Gradativamente, a medida que €
decresce, o requisito de precisdao aumenta, forcando o
agente a refinar sua politica para alcancar contatos mais
precisos.

V. Resultados

Mensuramos o progresso do aprendizado na tarefa pro-
posta por meio da decomposi¢do das recompensas em seus
componentes ao longo do tempo; semelhantemente, acom-
panhamos a fungao de perda para verificar a ocorréncia de
otimizagdo como um teste de sanidade. Adicionalmente,
monitoramos a distdncia minima entre o alvo 7; e a junta
J7 (por episédio, em uma média mével n = 40) e a taxa de
sucesso cumulativa, i.e., a razao entre todos os episddios
executados e aqueles terminados antes de ¢ = 128 devido
ao contato (dentro do threshold €p;, = 0.3) sustentado
por pelo menos 5 instantes.

A Figura 3 ilustra tendéncias caracteristicas de aprendi-
zado bem sucedido para o problema proposto. Na auséncia
de aprendizado do controle da cadeia cinematica, a recom-
pensa de contato decresceria abaixo da linha tracejada
que monitora €, vide sua formula definida na Secao IV-D
e ilustrada na Figura 1; semelhantemente, a distancia
minima alcancada entre a ponta de dedo e o alvo nao
decresceria ao longo do treino.
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Figura 4. Funcdo de perda e taxa de sucesso cumulativa ao longo do treinamento.

Observamos, de fato, que a recompensa de contato
média segue crescendo e se estabiliza mesmo com o ane-
lamento do parametro €; observamos também a reducgao
das penalidades por violacao de limites anatomicos, quase
totalmente evitados ao final do treino; a penalidade por
colisdo sé aparece ocasionalmente durante o treino, mas
sua magnitude também decresce com o tempo. Importan-
temente, a distdncia minima atingida decresce consisten-
temente até = 0.2 o final do treino. Estas observagoes nao
indicam sucesso completo (especialmente com respeito a
generalizagdo para quaisquer instancias do problema), mas
sugerem pelo menos a manipulagao direcionada da cadeia
cinematica para atender os objetivos estabelecidos pelas
fungbes de recompensa.

Analisando a Figura 4, observamos que a funcdo de
perda tem o cardter irregular tipico de métodos baseados
em gradiente de politica, fortalecido pela recursividade
estrutural da estratégia actor-critic (utilizamos as saidas
de uma rede neural para treinar a outra) e pelo anelamento
do parametro €, que implica em uma funcao de recompensa
néao-estaciondria e, portanto, mais dificil de se aproximar.
No geral, entretanto, a fungdo decresce até um minimo
préoximo do inicio do treino, mas com € = 0.3 em vez
de ¢ = 1.5, adaptada ao requisito de maior precisdo no
contato.

Ainda, a taxa de sucesso cresce consistentemente — o que
é esperado, naturalmente, para uma razdo cumulativa —
até 30% ao final do treino. Avaliado em 1000 episddios,
o modelo obtido ao final do treino ilustrado nas Figuras
3 e 4 obteve uma taxa de sucesso de 50%. As animacoes
produzidas estao disponiveis como sequéncias de transfor-
madas, estruturadas para renderizacdo via Blender?, junto

4Software de modelagem e animacdo 3D de cédigo aberto, dispo-
nivel em https://github.com/blender/blender.

ao cédigo-fonte do trabalho® e, para conveniéncia, também
na plataforma YouTube®.

Uma andlise qualitativa das animagoes produzidas,
técnica utilizada recorrentemente ao longo do desenvolvi-
mento do trabalho para identificar diregoes de evolugao
e corregdo, revela a auséncia do problema de jitter,
comumente enfrentado em trabalhos estado-da-arte ([1],
[2]); além disso, os movimentos produzidos sdo visual-
mente organicos em virtude da propria modelagem do
problema, dispensando termos de eficiéncia de movimento
ou adaptacoes especificas contra jitter. De fato, os limites
anatdémicos sdo raramente violados; por outro lado, nao
é dificil amostrar casos onde o modelo ainda obtém a
penalidade de colisdo”. No geral, a cadeia é manipulada
com sucesso para aproximar a ponta de dedo selecionada
do alvo aleatoriamente instanciado, mas em metade dos
casos 0 modelo nédo atinge precisdo completa. Atribuiges
dos sucessos e falhas observados nesta secao a decisoes da
metodologia proposta sdo elaboradas na Sec¢ao VI.

Tabela I
Hiperparametros utilizados na PPO

Hiperparametro Valor
Taxa de aprendizado 1.6 x 10~3
Fator de desconto () 0.99
Suavizacdo GAE (\) 0.95

Ambientes paralelos 16

Tamanho do batch 2048
Intervalo de clipping 0.25
Coeficiente de entropia 0.005

5Disponivel em https://github.com/masganem/msi2.

6Disponivel em https://youtu.be/ZsoqlpEgEbo.

"Intuitivamente, devido & inerente baixa probabilidade de colisdo
durante o treino.


https://github.com/blender/blender
https://github.com/masganem/msi2
https://youtu.be/ZsoqlpEgEbo

VI. Consideracoes

A. Do problema de generalizagao

A tarefa de controle de cadeias cinematicas no espago
R3 é um desafio de inerente alta dimensionalidade, propor-
cional ao numero de graus de liberdade coordenados e a
complexidade da estrutura da cadeia em si (vide Dyy 4|
e ¢ : J — J definidas na Secdo IV-A). Apesar da dindmica
constante, os cendrios apresentados a cada episddio tém
0 objeto e o alvo aleatoriamente instanciados no espaco;
além disso, a junta j7 é amostrada aleatoriamente dentre
as pontas dos dedos.

Essa estratégia, junto a execucgdo de multiplos ambi-
entes de treino em paralelo (possivel pela indiferenca
com respeito & ordenacdo dos episédios de treino®), é
adotada com vistas aprender uma politica genérica via
amostragem do espaco total de possiveis configuragoes do
problema. A taxa de sucesso examinada na Se¢do V sugere
que tal generalizagdo ndo é atingida; de fato, analisando
qualitativamente as animacdes, observamos casos onde o
agente s6 se aproxima parcialmente do alvo e para de se
movimentar, ou atinge um ponto que equilibra penalidades
e recompensas (e.g., alcangar o alvo com uma configuracéo
anatOomica invdlida) — este dltimo sendo um caso marginal.

A ordenagdo dos cenarios apresentados, refletindo uma
estratégia de curriculum [6], inviabiliza o treino paraleli-
zado e ndo promove resultados melhores, mesmo coletando
miltiplos batches® antes de cada atualizacdo dos pesos;
na verdade, o agente se enviesa para uma configuragio
especifica do problema a cada novo episédio. A Secao
VII elabora alternativas para a solugdo do problema de
generalizagdo sem comprometer a eficiéncia do processo
de treino.

B. Da confeccao das fungdes de recompensa

Um ponto limitante da abordagem adotada estd re-
lacionado a prépria formulagdo manual das funcbes de
recompensa e a escolha empirica de seus pesos. Embora
tais decisbes sejam essenciais para induzir propriedades
desejaveis, elas também introduzem vieses no comporta-
mento aprendido. Na pratica, o agente pode estar oti-
mizando particularidades da superficie multidimensional
estabelecida pelo gradiente da funcéo de recompensa, apos
somados todos os seus componentes, em vez de adquirir
uma noc¢ao mais geral de controle da cadeia cinematica.

Além disso, alteracoes nos pesos p ou na forma aritmé-
tica dos termos de recompensa podem resultar em poli-
ticas significativamente distintas, indicando sensibilidade
elevada a configuragdo de reward shaping. Esse fenomeno
sugere que parte do desempenho obtido decorre mais do
cenario de treinamento cuidadosamente construido do que
de uma capacidade intrinseca de generalizacdo do método.

8Refletindo a estratégia adotada por Andrychowicz et al. (2019)
na tarefa de Dexterous In-Hand Manipulation [7].
9Conjuntos de pares {St,r(St)} contemplando miiltiplos episédios.

C. Da comparacdo com a cinemética inversa

Embora métodos tradicionais de cinemaética inversa
oferecam solugbes deterministicas e eficientes para o posi-
cionamento de cadeias articuladas, sua formulacao tende
a se distanciar do comportamento organico que buscamos
reproduzir neste trabalho. A abordagem proposta, ao
operar diretamente sobre variagoes angulares sucessivas e
propagar transformagoes via cineméatica direta, aproxima-
se mais de um modelo natural de movimento, no qual a
trajetoria emerge da interacao temporal entre estados.

Em contraste, solugdes de cinematica inversa frequente-
mente tratam o problema como uma busca instantanea por
uma configuracdo final valida, sem considerar a evolugao
continua das poses intermediarias. Deve-se a isso sua
eficiéncia computacional, mas também o carater robotico
das animagoes produzidas por tais métodos. Além disso, a
extensibilidade é uma contribuigdo central da metodologia
proposta, visto que o uso de fungdes de recompensa
configuraveis permite induzir comportamentos arbitrarios,
desde restri¢coes anatomicas até preferéncias estilisticas de
movimento — adaptagoes nao triviais sob o paradigma da
cinematica inversa.

VII. Trabalhos Futuros

Continuagoes do presente trabalho devem investigar
estratégias que ampliem a capacidade do agente de genera-
lizar sobre o espago completo de configuracoes gerado pela
aleatorizacdo de alvos e selecdo de juntas. Centralmente,
pode-se adaptar o curriculo de treino considerando a nao
equivaléncia de todas as configuracoes aleatérias, i.e., o
fato de que alguns cendrios sdo mais ou menos desafiadores
a depender da estrutura da cadeia cinematica ou da junta
47 selecionada. Amostragens mais estruturadas, curriculos
adaptativos que reajustem a dificuldade com base no
desempenho e a exposicdo deliberada a configuracoes
desafiadoras podem mitigar alguns dos problemas obser-
vados, especialmente aqueles em que o agente interrompe
o0 movimento ou converge para poses insatisfatorias.

Além da forma como os dados sdo apresentados ao
agente, avangos arquiteturais e algoritmicos podem con-
tribuir de maneira substancial para a robustez do apren-
dizado. Abordagens como politicas hierdrquicas, explicita-
cao da dindmica ou modelos com vieses espaciais explicitos
podem capturar melhor as dependéncias entre juntas
em cadeias cinematicas. Do mesmo modo, algoritmos
projetados para problemas continuos de alta dimensio-
nalidade como Twin Delayed Deep Deterministic Policy
Gradient (TD3)[10] podem apresentar maior estabilidade
no aprendizado do que o PPO neste cenario.

Por fim, sugere-se estudos de ablacdo com respeito
aos diversos componentes das fungdes de recompensa
propostas na Secao IV-D, bem como ao anelamento do
parametro € explicado na Segao IV-E.
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